ORIGINAL PAPER
Agglomeration process of post-production tobacco waste
More details
Hide details
1
Bialystok University of Technology, Faculty of Civil and Environmental Engineering, Department of Agri-Food Engineering and Environmental Management ul. Wiejska 45E, 15-351 Białystok, Poland
2
Industrial Institute of Agricultural Engineering ul. Starołęcka 31, 60-963 Poznań, Poland
Journal of Research and Applications in Agricultural Engineering 2018;63(1):40-45
KEYWORDS
ABSTRACT
The paper presents the research results of the agglomeration process of post-production tobacco waste arising during the cigarette production process at British-American Tobacco in Augustów. The agglomeration process tests were carried out on the SS-3 station with the "open compaction chamber-compacting piston" working system, having an open chamber with a diameter of 8 mm. Investigations of agglomeration of post-production tobacco waste were carried out according to the Hartley experiment plan PS/DS-P: Ha4, where the input values were: waste moisture (9, 12 and 15%), process temperature (60, 80 and 100°C), mass of the sample (0,3; 0,6 and 0,9 g) and the matrix hole length (37, 42 and 47 mm). During the tests, the susceptibility to compacting the tested tobacco waste was determined by determining the maximum pressures for agglomerating the raw material and the obtained granulate density. On the basis of the conducted tests, it was found that the tested tobacco waste is a material characterized by high compaction susceptibility, as it was evidenced by the obtained low values of maximum compaction pressures during its compaction. Moisture content of tobacco waste and the process temperature are the parameters having the greatest impact on the values of maximum compaction pressures and the density of granules obtained from tobacco waste. The most advantageous temperature range for carrying out the agglomeration process of tobacco waste from the point of view of the work system load is 60-70°C. The high granulate density obtained during the tests (733,3-1313,32 kg∙m-3) is a very advantageous feature of the product.
REFERENCES (17)
1.
Briski F., Horgas N., Vukovic M., Gomzi Z.: Aerobic composting of tobacco industry solid waste – simulation of the process. Clean Techn. Environ. Policy, 2003, 5, 295-301.
2.
Fathiazad F., Delazar A., Amiri R., Sarker S.D.: Extraction of Flavonoids and Quantifcation of Rutin from waste Tobacco Leaves. Iranian Journal of Pharmaceutical Research, 2006, 3, 222-227.
3.
Gwiazdowski R., Barna A., Wepa M., Marchewka R.: Skutki wdrożenia dyrektywy tytoniowej. Raport Centrum im. Adama Smitha o ekonomicznych skutkach wdrożenia rewizji dyrektywy 2001/37/WE Parlamentu Europejskiego i Rady Europy z 5 czerwca 2001 roku, 2013.
4.
Meher K.K., Panchwagh A.M., Rangrass S., Gollakota K.G.: Biomethanation of tobacco waste. Environ. Pollut., 1995, 90, 2, 199-202.
5.
Mumba P.P., Phiri, R.: Environmental Impact Assessment of Tobacco Waste Disposal. Int. J. Environ. Res., 2008, 2(3), 225-230.
6.
Obidziński S.: Badanie procesu zagęszczania odpadów tytoniowych. Inżynieria i Aparatura Chemiczna, 2009, 1, 50(42), 29-30.
7.
Obidzinski S.: Analysis of usability of potato pulp as solid fuel. Fuel Processing Technology. Fuel Processing Technology, 2012, 94, 67-74.
8.
Obidziński S.: Pelletization process of postproduction plant waste. Int. Agrophisics, 2012, Vol. 26(3), 279-284.
9.
Obidziński S., Hejft R.: Wpływ parametrów technicznotechnologicznych procesu granulowania pasz na jakość otrzymanego produktu. Journal of Research and Applications in Agricultural Engineering, 2012, 1, 109-114.
10.
Obidziński S., Hejft R.: Granulowanie odpadów pochodzenia roślinnego w układzie roboczym granulatora. Journal of Research and Applications in Agricultural Engineering, 2013, Vol. 58(1), 133-138.
11.
Obidziński S., Dołżyńska M., Luto E.: Research of the densification process of post-harvest tobacco waste. Journal of Research and Applications in Agricultural Engineering, 2017, Vol. 62(1), 149-154.
12.
Öztürk T, Bayraklı M.: The possibilities of using tobacco wastes in producing lightweight concrete. Agricultural Engineering International: the CIGR Ejournal, 2005, Vol. VII. Manuscript BC 05 006.
13.
Piecuch T., Dąbrowski T., Harabin Z., Waluś J.: Możliwość i celowość dodatku pyłów tytoniowych o wsadu w procesie kompostowania odpadów komunalnych. Ochrona Powietrza i Problem Odpadów, 1997, 6, 200-212.
14.
Piotrowska-Cyplik A., Cyplik P., Czarnecki Z.: Kompostowanie brykietowanego pyłu tytoniowego. Journal of Research and Applications in Agricultural Engineering, 2006Vol. 51(3), 62-66.
15.
Piotrowska-Cyplik A., Cyplik P., Białas W., Czarnecki Z.: Wpływ sposobu kompostowania odpadów z przemysłu tytoniowego na wybrane parametry fizyko-chemiczne i enzymatyczne. Acta Agrophisica, 2008, 12(2), 487-498.
16.
Piotrowska-Cyplik A., Dach J., Cyplik P., Marecik R., Gwiazdowska D.: Biodegradacja nikotyny w procesie kompostowania odpadu tytoniowego z osadem ściekowym przy podwyższonej emisji amoniaku. Nauka Przyroda Technologie, 2008, T. 2, 3, 1-12.
17.
Stachowiak B., Piotrowska-Cyplik A., Dach J.: Ocena aktywności fungistatycznej kompostu z biomasy roślinnej zawierającej odpady tytoniowe. Ochrona Środowiska, 2008, Vol. 30, 3, 27-29.