ORIGINAL PAPER
Application of artificial neural networks to analyze the emergence of soybean seeds after applying herbal treatments
 
More details
Hide details
1
Poznań University of Life Sciences, Institute of Biosystems Engineering, Faculty of Agronomy and Bioengineering ul. Wojska Polskiego 50, 60-627 Poznań, Poland
 
2
Koszalin University of Technology, Department of Agrobiotechnology, Faculty of Mechanical Engineering ul. Racławicka 15-17, 75-620 Koszalin, Poland
 
3
Lublin University of Technology, Institute of Environmental Protection Engineering, Faculty of Environmental Engineering ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2018;63(4):145-149
 
KEYWORDS
ABSTRACT
The aim of the following work is to indicate factors which significantly affect the emergence of selected soybean varieties after application of natural herbal extracts based on - Levisticum officinale L., Ribes nigrum L., Matricaria chamomilla L., as wet seed treatments using two methods of treatment. The research material included seeds treated for 24 hours in macerats, decoctions and infusions made from the above herb species as well as untreated seeds, seeded together with preparations in point application. Untreated seeds were used as the control group. The experiment was being conducted for 16 days in a greenhouse facility belonging to the COBORU Experimental Station for Variety Testing in Karzniczka. The assessed parameter referred to the percentage of soybean seedlings emergence ability determined based on the number of emerged plants. Indication of the importance of factors in shaping soybean emergence and considering their rank was possible due to the sensitivity analysis of the generated neural network with the MLP architecture 4:4-13-5-1:1 with two hidden layers. All analyzed factors of the experiment significantly shaped the ability of soybean emergence, with the following order: cultivar, application method, herb species from which the extract was made, form of preparation.
REFERENCES (30)
1.
Ashraf M., Fooland M.R.: Pre-Sowing Seed Treatment – A Shotgun Approach to Improve Germination, Plant Growth, and Crop Yield Under Saline and Non-Saline Conditions. Advances in Agronomy, 2005, 88, 223-271.
 
2.
Baron B., Pasierbek A.: Porównanie wydajności algorytmów gradientu sprzężonego i quasi-newtonowskiego BFGS w zagadnieniu optymalizacji rozpływu mocy w systemie elektroenergetycznym. Elektryka, 2009, 3.
 
3.
Chirchil G.J.: Seed quality of soybean (Glycine max [l.] merrill) genotypes under varying storage and priming methods, mother plant nutrient profiles and agro-ecologies in Kenya. PhD thesis, 2015, http://irlibrary.ku.ac.ke/bits....
 
4.
Cho Y., Scott R.A.: Combining ability of seed vigor and seed yield in soybean. Euphytica, 2000, Vol. 112(2), 145-150.
 
5.
Christian, Erik J.: Plant extracted essential oils as a contact fungicide seed treatment for organic corn. Retrospective Theses and Dissertations, 2007, http://lib.dr.iastate.edu/cgi/....
 
6.
Czerwińska E., Szparaga A., Piskier T., Deszcz E.: Assessment of the potential for the improvement in germination capacity of leguminous plants by means of plant extracts. Journal of Research and Applications in Agricultural Engineering, 2016, Vol. 61(3), 62-66.
 
7.
Grahovac J., Jokić A., Dodić J., Vućurović D., Dodić S.: Modelling and prediction of bioethanol production from intermediates and byproduct of sugar beet processing using neural networks. Renew. Energy, 2016, 85, 953-958.
 
8.
Grzybowska- Brzezińska M.: The ecological awareness of the consumers on the market behavior. Studies & Proceedings of Polish Association for Knowledge Management, 2009, 51, 242-253.
 
9.
Hinson K., Hartwig E.E.: Soybean Production in the tropics. F.A.O Rome Italy, 1997.
 
10.
Horoszkiewicz-Janka, J. Jajor, E.: The effect of seed dressing on healthiness of barley, wheat and rape in early development stages. Journal of Research and Applications in Agricultural Engineering, 2006, Vol. 51(2), 47-53.
 
11.
Ibiam O.F.A., Umechuruba C.I., Arinze A.E.: Evaluation of the Efficacy of Seed Dressing fungicides (Bavistin, Benlate, Fernasan-D, Apron Plus 50 DS, and DithaneM45) In the Control of Seed-Borne Fungi of Rice (Oryzae sativa L) Variety Faro 15 In Vitro. Sciencia Africana, 2006, Vol. 5 (1), 1-10.
 
12.
Khairunniza-Bejo S., Mustaffha S., Ishak W., Ismail W.: Application of Artificial Neural Network in Predicting Crop Yield: A Review. Journal of Food Science and Engineering, 2014, 4, 1-9.
 
13.
Klem K., Váňová M., Hajšlová J., Lancová K., Sehnalová M.: A neural network model for prediction of deoxynivalenol content in wheat grain based on weather data and preceding crop. Plant, Soil Environ. 2007, 53, 421-429.
 
14.
Mazur D.: Wykorzystanie danych określonych lingwistycznie w systemach pozyskiwania wiedzy. Pr. Nauk. Akad. Ekon. w Katowicach. Syst. Wspomagania Organ. SWO 2002, 317-328.
 
15.
Mladenov M., Dejanov M.: Application of neural networks for seed germination assessment. Conference paper in: 9th WSEAS International Conference on Neural Network (NN’08), 2008.
 
16.
Neruda M., Neruda R.: To contemplate quantitative and qualitative water features by neural networks method. Plant Soil Environ, 2002, 2002, 322-326.
 
17.
Niedbała G., Przybył J., Sęk T.: Prognosis of the content of sugar in the roots of sugar-beet with utilization of the regression and neural techniques. Agric. Engineering, 2007, 2, 225-234.
 
18.
Niedbała G., Mioduszewska N., Mueller W., Boniecki P., Wojcieszak D., Koszela K.: Use of computer image analysis methods to evaluate the quality topping sugar beets with using artificial neural networks. In: Falco, C.M., Jiang, X. (Eds.), Proc. SPIE 10033, Eighth International Conference on Digital Image Processing (ICDIP 2016), Chengdu, 2016, 100332M.
 
19.
Rochalska M., Orzeszko- Rywka A., Tracz M.: Estimation efficiency of powdered herbs of crop seeds treatment. Journal of Research and Applications in Agricultural Engineering, 2010, Vol. 55(4), 67-72.
 
20.
Sas-Piotrowska B., Piotrowski W., Kaczmarek- Cichosz R.: Longevity and healthiness of oat (Avena sativa L.) seeds treated with plant extracts. Journal of Plant Protection Research, 2005, Vol.45 (3), 181-193.
 
21.
Sas-Piotrowska B., Piotrowski W.: Vitality and healthiness of barley (Hordeum vulgare L.) seeds treated with plant extracts. Journal of plant protection research, 2010, Vol. 50 (1), 117-124.
 
22.
Sas-Piotowska B., Piotrowski W.: Vitality and Healthiness of Cereal Grains Treated with Plant Decoctions. Rocznik Ochrona Środowiska, 2011, 13, 571-596.
 
23.
Sennrich R., Haddow B.: Linguistic Input Features Improve Neural Machine Translation. In: Proceedings of the First Conference on Machine Translation, Vol.1: Research Papers, Pages 83–91, Berlin, Germany, August 11-12, 2016., Association for Computational Linguistics, 2016, 83-91.
 
24.
Shantaiya, S., Ansari, U.: Identification Of Food Grains And Its Quality Using Pattern Classification. International Journal of Computer and Communication Technology (IJCCT), 2010, Vol. 2(2), 3-5.
 
25.
Sharma K.K., Singh U.S., Sharma P., Kumar A., Sharma L.: Seed treatments for sustainable agriculture-A review. Journal of Applied and Natural Science, 2015, Vol. 7(1), 521-539.
 
26.
Škrubej U., Rozman Č. Stajnko D.: The accuracy of the germination rate of seeds based on image processing and artificial neural networks. Agricultura, 2015, Vol. 12 (1-2), 19-24.
 
27.
Wojciechowski T., Niedbala G., Czechlowski M., Nawrocka J.R., Piechnik L., Niemann J.: Rapeseed seeds quality classification with usage of VIS-NIR fiber optic probe and artificial neural networks. In: Proceedings - 2016 International Conference on Optoelectronics and Image Processing, ICOIP, 2016.
 
28.
Verkleij F.N.: Seaweed Extracts in Agriculture and Horticulture: a Review. Biological Agriculture & Horticulture, 1991, Vol. 8(4), 309-324.
 
29.
Zhao-yan, L., Fang, C., Yi-bin Y., Xiu-qin R.: Identification of rice seed varieties using neural network. Journal of Zhejang University Science, 2005, Vol. 6(11), 1095-1100.
 
30.
Zmarlicki K.: Students Preferences for Fruit from Organic Production. Rocz. Nauk. SERiA, 2010, 12(4): 407-410.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top