ORIGINAL PAPER
Comparison of two remote nitrogen up-take sensing methods to determine needs of nitrogen application
,
 
 
 
More details
Hide details
1
Politechnika Koszalińska, Wydział Mechaniczny, Katedra Automatyki Mechaniki i Konstrukcji ul. Racławicka 15-17, 75-620 Koszalin, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2017;62(2):76-79
 
KEYWORDS
ABSTRACT
Precise (depending on the planting demands, varied season-season, field to field, and even site to site) nitrogen fertilization is the way enabling the costs minimizing of application, the lower nitrogen balance in soil and the groundwater protection process as well as maximizing the yield. Comparison of two remote sensing methods of plants’ nitrogen needs during vegetation season has been conducted. Measurement with Yara N-Sensor facilities installed on tractor’s roof and multispectral camera (Parrot Sequoia, R, G, RED and NIR bands) installed on UAV has been taken.
REFERENCES (12)
1.
Kerry R., Oliver M.A., Frogbrook Z.L.: Geostatistical Applications for Precision Agriculture. Precision Agriculture, 2010, 305-312.
 
2.
Knight S. M.: Soil mineral nitrogen testing: Practice and interpretation, 2006.
 
3.
Dee L. A.: Analysis of Nitrogen Trifluoride. 1976.
 
4.
Samborski S.M., Gozdowski D., Walsh O.S., Kyveryga P., Stłpieł M.: Sensitivity of sensor-based nitrogen rates to selection of within-field calibration strips in winter wheat. Crop and Pasture Science, 2017, t. 68, 2, 101.
 
5.
Shaver T.M., Khosla R., Westfall D.G.: Utilizing normalized difference vegetation indices (NDVI) and in-season crop and soil variables to estimate corn grain yield”. [Online]. Dostępne na: http://fluidfertilizer.org/wp-.... [Udostępniono: 18-mar-2017].
 
6.
Govaerts B., Verhulst N.: The normalized difference vegetation index (NDVI) Greenseeker (TM) handheld sensor: toward the integrated evaluation of crop management. Part AConcepts and case studies, International Maize and Wheat Improvement Center, 2010. [Online]. Dostępne na: http://plantstress.com/methods.... [Udostępniono: 18-mar-2017].
 
7.
Fang S., Tang W., Peng Y., Gong Y., Dai C., Chai R., Liu K.: Remote Estimation of Vegetation Fraction and Flower Fraction in Oilseed Rape with Unmanned Aerial Vehicle Data. Remote Sens., 2016, 8, 416.
 
8.
Wojtowicz M., Wojtowics A., Piekarczyk J.: Application of remote sensing methods in Agriculture. Communication in Biometry and Crop Science, 2015, t. 11, 1, 31-50.
 
9.
Behrens T., Muller J., Diepenbrock W.: Utilization of canopy reflectance to predict properties of oilseed rape (Brassica napus L.) and barley (Hordeum vulgare L.) during ontogenesis. European Journal of Agronomy, 2006, t. 25, 4, 345-355.
 
10.
„Yara N-Sensor”. [Online]. Dostępne na: http://www.yara.pl/ crop-nutrition/Tools-and-Services/n-sensor/. [Udostępniono: 11-cze-2017].
 
11.
„Parrot Sequoia”. [Online]. Dostępne na: https://www.parrot.com/pl/en/b...-.
 
12.
Mazur P., Chojnacki J.: Wykorzystanie dronów do teledetekcji. Technika Rolnicza Ogrodnicza Leśna, 2017, 1, 25-28.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top