ORIGINAL PAPER
Corrosion of AISI 304L (EN 1.4307) stainless steel in animal slurry
,
 
,
 
,
 
 
 
 
More details
Hide details
1
Politechnika Koszalińska, Wydział Mechaniczny, ul. Racławicka 15-17, 75-620 Koszalin, Poland
 
2
Przemysłowy Instytut Maszyn Rolniczych, ul. Starołęcka 31, 60-963 Poznań, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2014;59(1):104-108
 
KEYWORDS
ABSTRACT
The stainless steels are used to build parts of machinery for agriculture. These components should have adequate corrosion resistance because they contact with aggressive environments, such as natural and artificial fertilizers, or e.g. during the biogas production. In such environments austenitic AISI 304L (EN 1.4301) and AISI 316L (EN 1.4571) stainless steels are mostly used. In the available literature authors found no information on the corrosion potentiodynamic tests in manure. That was the reason to undertake the studies on one of the austenitic stainless steels to perform corrosion tests in the environment of animal slurry. The article presents the analysis of general and pitting corrosion of AISI 304L (EN 1.4307) steel in the environment which is the cattle slurry. Potentiodynamic measurements were made on the potentiostat ATLAS 98 with a scan rate of 0.1 mV∙s-1 in the anodic direction and with scan rate of 1 mV∙s-1 in the return cathodic direction. The measurement was started in the anodic direction from potential of minus 600 mV against the saturated calomel electrode (SCE) to achieve a current density of 1000 μA∙cm-2. After that the cathodic scan was done back to the potential of -600 mV vs. SCE. The general corrosion in animal slurry is higher than in 3% water solution of sodium chloride. The corrosion potential measured in the animal slurry was equal to -525 mV vs. SCE. That clearly indicates a higher tendency to general corrosion in comparison with the results obtained in 3% sodium chloride solution (-200 mV vs. SCE). The passive current density ratio measured in the animal slurry to that one in 3% NaCl aqueous solution is equal approximately 8.5.
REFERENCES (25)
1.
Bietresato M., Sartori L.: Technical aspects concerning the detection of animal waste nutrient content via its electrical characteristics. Bioresource Technology, 2013, 132, 127-136.
 
2.
Hryniewicz T., Montemor F., Fernandes J.S., Kuszczak J., Corrosion behaviour of AISI 304 stainless steel in varying alkaline environments. Inżynieria Materiałowa, 2001, 30 (1), 58-63.
 
3.
Hryniewicz T., Rokosz K.: Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions. Surface & Coatings Technology, 2010, 204, 2583-2592.
 
4.
Hryniewicz T., Rokosz, K.: Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing. Materials Chemistry and Physics, 2010, 123, 47-55.
 
5.
Hryniewicz T., Rokosz, K.: Polarization characteristics of magnetoelectropolishing stainless steels. Materials Chemistry and Physics, 2010, 121, 169-174.
 
6.
Hryniewicz T. Rokosz, K., Micheli V.: Auger/AES surface film measurements on AISI 316L biomaterial after Magnetoelectropolishing. PAK (Measurement Automation and Monitoring), 2011, 57, 609-614.
 
7.
Hryniewicz T., Rokosz K., Cristea E.A., Measurement and Visualisation of Pitting Corrosion. Acta technologica agriculturae, 2012, 3, 73-77.
 
8.
Hryniewicz T. Rokosz, K.: Electrochemical and XPS studies of AISI 316L stainless steel after electropolishing in a magnetic field. Corrosion Science, 2008, 50, 2676-2681.
 
9.
Hryniewicz T., Rokicki R., Rokosz K.: Magnetoelectropolishing for metal surface modification. Transactions of the Institute of Metal Finishing, 2007, 85, 325-332.
 
10.
Lebiocka M., Pawłowski A. Biometanizacja metodą zrownoważonej utylizacji odpadów. Rocznik Ochrony Środowiska (Annual Set The Environment Protection), 2009, 11, 1257-1266.
 
11.
Marszałek M., Banach M., Kowalski Z.: Utylizacja gnojowicy na drodze fermentacji metanowej i tlenowej – produkcja biogazu i kompostu. Czasopismo techniczne. Chemia 2-Ch, 2011, 10, 143-158.
 
12.
Rico C., Rico J.L., Tejero I., Muńoz N., Gomez, B.: Anaerobic digestion of the liquid fraction of dairy manure in pilot plant for biogas production: residual methane yield of digestate. Waste Manage, 2011, 31, 2167–2173.
 
13.
Rokosz K., Hryniewicz T.: Effect of magnetic field on the pitting corrosion of austenitic steel Type AISI 304. Ochrona przed Korozją, 2011, 54 (7), 487-491.
 
14.
Rokosz, K., Hryniewicz, T., Raaen S.: Characterization of Passive Film Formed on AISI 316L Stainless Steel after Magneto-electropolishing in a Broad Range of Polarization Parameters. Steel Research International, 2012, 83, 910-918.
 
15.
Rokosz, K., Hryniewicz, T., Raaen S.: Pitting Corrosion Resistance of AISI 316L Stainless Steel in Ringer's Solution after Magnetoelectrochemical Polishing. Corrosion, 2010, 66, 035004-035004-11.
 
16.
Rokosz K., Hryniewicz T.: Pomiary odporności na korozję wżerową stali austenitycznej AISI 304 używanej do budowy cystern mleczarskich. Technika Rolnicza Ogrodnicza Leśna, 2012, 3, 12-15.
 
17.
Safley Jr L.M., Westerman P.W., Kim Carr D.S.: Corrosion of galvanized steel in animal waste environments. Bioresource Technology, 1992, 40, 53-61.
 
18.
Shaffer T. F. Jr.: Use of corrosion-resistant steels for agricultural chemicals. Transactions of the ASAE, 1964, 7 (4), 439-443, 447.
 
19.
Stężała, S. Wieczorek, S. Kitowski, A.: Badania skuteczności i wyznaczenia mechanizmu ochrony protektorowej stalowych zbiorników wypełnionych gnojowicą. Problemy Inżynierii Rolniczej, 1998, 6 (2), 81-88.
 
20.
Szymański K.: Nowe rozwiązania w zakresie pozyskiwania biogazu według technologii MT-ENERGIER. Rocznik Ochrony Środowiska (Annual Set: The Environment Protection), 2010, 12, 249-262.
 
21.
www.stallkamp.pl/biogazownie.html.
 
22.
Mixers for biogas plant www.ljm.dk.
 
23.
Stainless steel in biogas production - a sustainable solution for green energy. www.worldstainless.org.
 
24.
Stal nierdzewna. www.stalenierdzewne.pl/poradyekperta/biogas.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top