ORIGINAL PAPER
Development of the hardware and software complex for fertilizer application on agricultural fields
,
 
,
 
,
 
 
 
More details
Hide details
1
United Institute of Informatics National Academy of Science, Minsk, Belarus
 
2
Industrial Institute of Agricultural Engineering, Poznan, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2014;59(1):34-39
 
KEYWORDS
ABSTRACT
In the article developing of hardware and software complex for fertilizer application on agricultural fields is described. The complex is intended for environmental pressures reduction in case of treatment and prevention of agricultural vegetation diseases. The developed technique of data obtaining by UAV, processing of remote sensing data and preparing of control data for system of fertilizer application is considered.
REFERENCES (24)
1.
Bonnefon, R. Geographic information system updating using remote sensing images / R. Bonnefon, P. Dherete, J. Desachy // Pattern Recognition Letters. - 2002. - Vol. 23. - P. 1073-1083.
 
2.
Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications / W.J.D. van Leeuwen [et al.] // Remote Sensing of Environment. - 2006. - Vol. 3. - P. 67-81.
 
3.
Sofou, A. Soil image segmentation and texture analysis: a computer vision approach / A. Sofou, G. Evangelopoulos, P. Maragos // IEEE Geoscience and Remote Sensing Letters. – 2005. – Vol. 2. – P. 394-398.
 
4.
Shrivastava, R.J. Land cover classification and economic assessment of citrus groves using remote sensing / R.J. Shrivastava, J.L. Gebelein / Journal of Photogrammetry and Remote Sensing. – 2007. – Vol. 61. – P. 341-353.
 
5.
Verstraete, M.M. Designing optimal spectral indices for remote sensing applications / M.M. Verstraete, B. Pinty // IEEE Transactions on Geoscience and Remote Sensing. – 1996. – Vol. 34, No 5. – P. 1254-1265.
 
6.
Using high spatial resolution multispectral data to classify corn and soybean crops / G.B. Senay [et al.] // Photogrammetric engineering and remote sensing. – 2000. – Vol. 66, No. 3. – P. 319-327.
 
7.
Rubtsov, S.A. Aerospace equipment and technologies for precision farming / S.A. Rubtsov, I.N. Golovanev. A.N. Kashtanov. – M., 2008. – 330 p. [In russian].
 
8.
Laneve, G. Continuous monitoring of forests in Mediterranean area using MSG / G. Laneve, M.M. Castronuovo, E.G. Cadau // IEEE Transactions on Geoscience and Remote Sensing. – 2006. – Vol. 44, No. 10. – P. 2761-2767.
 
9.
Maselli, F. Evaluation of statistical methods to estimate forest volume in a Mediterranean region / F. Maselli, M. Chiesi // IEEE Transactions on Geoscience and Remote Sensing. – 2006. – Vol. 44, No. 8. – P. 2239-2250.
 
10.
de Wasseige, C. Retrieval of tropical forest structure characteristics from bi-directional reflectance of SPOT images / C. de Wasseige, P. Defourny // Remote Sensing of Environment. – 2002. – Vol. 83. – P. 362-375.
 
11.
Roy, D.P. Remote sensing of fire severity: assessing the performance of the Normalized Burn Ratio / D.P. Roy, L. Boschetti, S. Trigg // IEEE Geoscience and Remote Sensing Letters. – 2006. – Vol. 3, No. 1. – P. 112-116.
 
12.
Ritchie, J.C. Remote sensing techniques to assess water quality / J.C. Ritchie, P.V. Zimba, J.H. Everitt // Photogrammetric Engineering and Remote Sensing. – 2003. – Vol. 69, No. 6. – P. 695-704.
 
13.
Turner, M.G. Landscape ecology in theory and practice / M.G. Turner, R.H. Gardner, R.V. O'Neill. – Springer-Verlag, 2001. – 417 p.
 
14.
Belyaev, B.I. Optical remote sensing / B.I. Belyaev, L.V. Katkovsky. – Minsk: BSU, 2006. – 455 p. [In russian].
 
15.
Kumar, N. Do leaf surface characteristics affect agrobacterium infection in tea [Camellia Sinensis (L.) O Kuntze]? / N. Kumar, S. Pandey, A. Bhattacharya, P.S. Ahuja // J. Biosci. – 2004. – Vol. 29, No. 3. – P. 309-317.
 
16.
Wu, Lanlan. Identification of weed/corn using BP network based on wavelet features and fractal dimension / Lanlan Wu, Youxian Wen, Xiaoyan Deng, Hui Peng // Scientific Research and Essay, November, 2009. – Vol.4 (11). – P. 1194-1200.
 
17.
Qin, Z. Detection of rice sheath blight for in-season disease management using multispectral remote sensing / Zhihao Qin, Minghua Zhang // International Journal of Applied Earth Observation and Geoinformation, August, 2005. – Vol. 7, Issue 2, P. 115-128.
 
18.
Aksoy, S. Automatic Mapping of Linear Woody Vegetation Features in Agricultural Landscapes Using Very High- Resolution Imagery / S. Aksoy, H.G. Akcay, T. Wassenaar // IEEE Transactions on Geoscience and Remote Sensing. – January 2010. – No. 48 (1, 2). – P. 511-522.
 
19.
Ganchenko, V. Special Areas Detection and Recognition on Agricultural Fields Images / V. Ganchenko, R. Sadykhov, A. Doudkin, Al. Petrovsky, T. Pawlowski // Digital Image and Signal Processing for Measurement Systems; Ed. by Richard Duro, Fernando Pena; River Publishers. – 2012. – Ch. 8. – P. 201-233.
 
20.
Starovoytov, V.V. Local geometrical methods of digital processing and the analysis of images / V.V. Starovoytov. – Minsk: IEC BAS. – 1997. – 284 p.
 
21.
Haralick, R.M. Textural Features for Image Classification / R.M. Haralick, K. Shanmugam and I. Dinstein // IEEE Transactions on Systems, Man and Cybernetics. – No.6. – 1973. – P. 610–621.
 
22.
Feder, E. Fractals / E. Feder. – Moscow: Mir, 1991. – 254 p. [In Russian].
 
23.
Viattchenin, D. A Heuristic Approach to Possibilistic Clustering: Algorithms and Applications / D. Viattchenin. – Springer, 2013. – 200 p.
 
24.
Haykin, S. Neural networks: A Comprehensive Foundation, Second Edition / S. Haykin. – Moscow: Publishing House "Williams", 2006. – 1104 p. [In Russian].
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top