ORIGINAL PAPER
Effect of xenobiotics in the soil on the germination of maize
,
 
,
 
 
 
 
More details
Hide details
1
Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
 
2
Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
 
3
Industrial Institute of Agricultural Engineering, Starolecka 31, 60-963 Poznan, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2016;61(4):92-95
 
KEYWORDS
ABSTRACT
The study focused an assessing the influence of xenobiotics, such as NaCl and diesel oil on germination and early development of maize (Zea mays L.). Through the test the seed germination and growth inhibition of shoot and root of maize were evaluated. The experiments were carried out at different xenobiotics concentration and their mix. It was observed that the presence solely of compounds did not toxic for root growth, but i increase in their concentration caused decreasing of seed germination and root and shoot development. Both sodium chloride and diesel oil were more toxic for shoot and strongly inhibited its growth. The addition of diesel oil to soil contaminated with sodium chloride caused strongest inhibition of seed germination and plant growth.
REFERENCES (24)
1.
Amrheln C., Strong J.E., Mosher P.A.: Effect of deicing salts on metal and organic matter mobilization in roadside soils. Environ. Sci. Technol., 2004, Vol. 38, 720-773.
 
2.
Amukali O., Obadoni B.O., Mensah J.K.: Effects of different NaCl concentrations on germination and seedling growth of Amaranthus hybridus and Celosia argentea, Afr. J. Environ. Sci. Technol., 2015, Vol. 9(4), 301-306.
 
3.
Begum F., Ahmad I.M., Nessa A., Sultana W.: The effect of salinity on seed quality of wheat. J. Bangl. Agric. Univ., 2010, Vol. 62, 444-453.
 
4.
Heidari A. Toorchi M., Bandehagh A., Shakiba M.R.: Effect of NaCl stress on growth, water relations, organic and inorganic osmolytes accumulation in sunflower (Helianthus annuls L.) lines. Univ. J. Envir. Res. Technol. 2001, Vol. 1(3), 351-362.
 
5.
Jafari M.H.S., Kafi M., Astaraie A.: Interactive effects of NaCl induced salinity, calcium and potassium on physiological traits of sorghum (Sorghum bicolor L.). Pakis. J. Bot. 2009, Vol. 41(6), 3053-3063.
 
6.
Katembe W.J., Ungar I.A., Mitchell J.P.: Effect of salinity on germination and seedling growth of two Atriplex species (Chenopodiaceae). Ann. Bot. 1998, Vol. 82, 167-175.
 
7.
Kiepurski J.: Efekty zastosowania kultur bakteryjnych do rozkładu ropopochodnych w istniejących układach środowiskowych. Inż. Ekol. 2000, Vol. 2, 97-110.
 
8.
Kucharski J., Jastrzębska E., Wyszkowska J., Hłasko A.: Wpływ zanieczyszczenia gleby olejem napędowym i benzyną ołowiową na jej aktywność enzymatyczną. Zesz. Probl. Post. Nauk Roln., 2000, Vol. 472, 457-464.
 
9.
Mazur Z., Radziemska M., Tomaszewska Z., Świątkowski Ł.: Effect of sodium chloride salinization on the seed germination of selected vegetable plants. Sci. Rev. Eng. Env. Sci., 2013, Vol. 62, 444-453.
 
10.
Norrström A.C.: Metal mobility by de-icing salt from an infiltration trench for highway runoff. Apll. Geochem., 2005, Vol. 20, 1907-1919.
 
11.
Ramakrishma D.M., Viraghavan T.: Environmental impact of chemical deices - A review. Water, Air & Soil Pollution, 2005, Vol. 166, 49-63.
 
12.
Ratnakar A., Rai A.: Effect of NaCl salinity on seed germination and early seedling growth of Trigonella foenum - Graecum L. Var. Peb., Octa J. Envir. Res., 2013, Vol. 1(4), 304-309.
 
13.
Remi S., Ivana D., Guillaume D., Patrice B., Marchetti M.: Transfer, exchange and effects of road deicing salts in a detention pond treating road water. Energy Procedia, 2013, Vol. 36, 1296-1299.
 
14.
Sairam R.K., Tyagi A.: Physiology and molecular biology of salinity stress tolerance in plants. Current Sci., 2004, Vol. 86(3), 407-421.
 
15.
Surygała J.: Właściwości produktów naftowych. Zanieczyszczenia naftowe w gruncie, red. J. Surygała. Oficyna Wyd. Polit. Wrocławskiej, Wrocław 2000, 55-95.
 
16.
Surygała J. Śliwka E.: Wycieki ropy naftowej. Przem. Chem., 1999, Vol. 78(9), 323-325.
 
17.
Tromp K., Lima A.T., Barendregt A., Verhoven J.T.: Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing. J. Hazard. Mater., 2012, Vol. 203-204, 290-298.
 
18.
Wieczorek D., Kwapisz E., Marchut-Mikołajczyk O., Bielecki S.: Phytotest as tools for monitoring the bioremediation process of soil contaminated with diesel oil. J Biot. Comp. Biolog. & Bionano., 2012, Vol. 93(4), 431-439.
 
19.
Wyszkowska J., Kucharski J.: Biochemiczne właściwości gleby zanieczyszczonej olejem napędowym a plonowanie łubinu żółtego. Roczn. Glebozn., 2004, Vol. 55(1), 299-309.
 
20.
Wyszykowski M., Wyszykowska J., Ziółkowska A.: Effect of soil contamination with diesel oil on yellow lupine field and macroelements content. Plant Soil. Environ., 2004, Vol. 50(5), 218-226.
 
21.
Wyszkowski M., Ziółkowski A.: Role of compost, bentoine and calcium oxide in restricting the effect of soil contamination with petrol and diesel oil on plants. Chemosphere, 2009, Vol. 74, 860865.
 
22.
Wyszykowski M., Ziółkowska A.: Zanieczyszczenie gleby produktami ropopochodnymi. Rol. ABC, 2003, Vol. 11(160), 4-5.
 
23.
Zadeh H.M., Naeini M.B.: Effects of salinity stress on the morphology and yield of two cultivars of Canola (Brassica napus L.), J. Agron., 2007, Vol. 6, 409-414.
 
24.
Ziółkowska A., Wyszkowski M.: Toxicity of petroleum substances to microorganisms and plants. Ecol. Chem. Eng. S. 2010, Vol. 17(1), 73-82.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top