ORIGINAL PAPER
Estimation of longitudinal precipitation of liquid indicator (LPLI) with the use of the artificial neural network (MLP, RBF) models
,
 
,
 
 
 
More details
Hide details
1
Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2018;63(1):58-62
 
KEYWORDS
ABSTRACT
The study presents the results of the analysis of two artificial neural networks as models of relationships between longitudinal precipitation of liquid indicator and selected technical and technological factors of spraying process. The measurements were conducted in laboratory conditions. A wind tunnel was primary element in experimental set-up. Based on the results, it can be stated that MLP model (R2 = 0.908 for validation data set) was more accurate that RBF model (R2 = 0.837 for validation data set). The analysis of input variables’ contribution indicated that the LPLI is influenced the most by the air flow speed and the droplet size. Spray boom height and spray nozzle angle were less influencing parameters.
REFERENCES (22)
1.
Arvidsson T., Bergstrom L., Kreuger J.: Spray drift as influenced by meteorological and technical factors. Pest Manag. Sci., 2011, 67, 586-598.
 
2.
Baetens K., Ho Q.T., Nuyttens D., De Schampheleire M., Endalew A.M., Hertog M.M.L.A., Nicolai B., Ramon H., Verboven P.: A validated 2-D diffusion-advection model for prediction of drift from ground boom sprayers. Atmos. Environ., 2009, 43, 1674-1682.
 
3.
Carlsen S.C.K., Spliid N.H., Svensmark B.: Drift of 10 herbicides after tractor spray application. 2. Primary drift (droplet drift). Chemosphere, 2006, 64, 778-786.
 
4.
Foque D., Pieters J.G., Nuyttens D.: Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants. Pest Manag. Sci., 2014, 70, 427-439.
 
5.
Forster W., Mercer G., Schou W.: Spray droplet impaction models and their use within AGDISP software to predict retention. New Zealand Plant Protection, 2012, 65, 85-92.
 
6.
Forster W., Steele K., Gaskin R., Zabkiewicz J.: Spray retention models for vegetable crops: preliminary investigation. New Zealand Plant Protection, 2004, 57, 260-265.
 
7.
Ghosh D., Singh U.P., Ray K., Das A.: Weed management through herbicide application in direct-seeded rice and yield modeling by artificial neural network. Span. J. Agric. Res., 2016, 14, e1003.
 
8.
Johann A., de Araújo A., Delalibera H., Hirakawa A. Soil moisture modeling based on stochastic behavior of forces on a no-till chisel opener. Comput. Electron. Agric., 2016, 121, 420-428.
 
9.
Kashi H., Emamgholizadeh S., Ghorbani H.: Estimation of Soil Infiltration and Cation Exchange Capacity Based on Multiple Regression, ANN (RBF, MLP), and ANFIS Models. Commun. Soil Sci. Plant Anal., 2014, 45, 1195-1213.
 
10.
Kjaer C., Bruus M., Bossi R., Lofstrom P., Andersen H.V., Nuyttens D., Erik Larsen S.: Pesticide drift deposition in hedgerows from multiple spray swaths. J. Pestic. Sci., 2014, 39, 14-21.
 
11.
Lebeau F., Verstraete A., Stainier C., Destain, M.F.: RTDrift: A real time model for estimating spray drift from ground applications. Comput. Electron. Agric., 2011, 77, 161-174.
 
12.
Li X., Chen F., Sun D., Tao M.: Predicting menopausal symptoms with artificial neural network. Expert Syst. Appl., 2015, 42, 8698-8706.
 
13.
Lofstrom P., Bruus M., Andersen H.V., Kjaer C., Nuyttens D., Astrup P.: The OML-SprayDrift model for predicting pesticide drift and deposition from ground boom sprayers. J. Pestic. Sci., 2013. 38, 129-138.
 
14.
Mandato S., Rondet E., Delaplace G., Barkouti A., Galet L., Accart P., Ruiz T., Cuq B.: Liquids' atomization with two different nozzles: Modeling of the effects of some processing and formulation conditions by dimensional analysis. Powder Technol., 2012, 224, 323-330.
 
15.
Mazurowski M.A., Szecówka P.M.: Limitations of sensitivity analysis neural networks in cases with dependent inputs. IEEE International Conference on Computational Cybernetics, 2006, 1-5.
 
16.
Orzechowski Z., Prywer J.: Wytwarzanie i zastosowanie rozpylonej cieczy. WNT Warszawa, 2008. ISBN 978-83-204- 3416-3.
 
17.
Pentoś K.: The methods of extracting the contribution of variables in artificial neural network models - Comparison of inherent instability. Comput. Electron. Agric., 2016, 127, 141-146.
 
18.
Pentoś K., Pieczarka K.: Applying an artificial neural network approach to the analysis of tractive properties in changing soil conditions. Soil Tillage Res., 2017, 165, 113-120.
 
19.
Szewczyk A., Łuczycka D.: Rozkład opadu rozpylonej cieczy wybranymi rozpylaczami dwustrumieniowymi w warunkach działania czołowego strumienia powietrza. Inżynieria Rolnicza, 2010, 122, 213-220.
 
20.
Wang F., Huang J., Wang Y., Liu Z., Peng D., Cao F.: Monitoring nitrogen concentration of oilseed rape from hyperspectral data using radial basis function. Int. J. Digit. Earth, 2013, 6, 550-562.
 
21.
Zabkiewicz J.: Spray formulation efficacy - holistic and futuristic perspectives. Crop Prot, 2007, 26, 312-319.
 
22.
Zhao H.Y., Xie C., Liu F.M., He X.K., Zhang J., Song J.L.: Effects of sprayers and nozzles on spray drift and terminal residues of imidacloprid on wheat. Crop Prot., 2014, 60, 78-82.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top