ORIGINAL PAPER
Forecasting of the daily demand for natural gas in rural households using the methods of artificial intelligence. Part I. Forecasting using artificial neural networks
,
 
 
 
More details
Hide details
1
University of Agriculture in Krakow, Department of Power Engineering and Agricultural Processes Automation, ul. Balicka 116B, 30-149 Kraków, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2015;60(2):62-64
 
KEYWORDS
ABSTRACT
The paper determines daily forecast demands for natural gas using artificial neural networks (MLPs). The influence of net-work structure, the type of activation function and the training process used on the quality of prediction were studied. It was found that the quality of forecasts was highly influenced by the network training algorithm. The smallest errors of the ex-pired forecasts (MAPE 5-6%) were obtained using the BFGS algorithm.
REFERENCES (14)
1.
Azari A.; Shariaty-Niassar M., Alborzi M.: Short-term and medium-term gas demand load forecasting by neural networks. Iranian Journal of Chemistry and Chemical Engineering, 2012, vol. 31(4), 77-84.
 
2.
Chen Q., She Y., Xu X.: Combination model for short-term load forecasting. The Open Automation and Control Systems Journal, 2013, vol. 5, 124-132.
 
3.
Dittman P., Szabela-Pasierbińska E.: Short-term sales fore-casts in management of natural gas distributing works. Management, 2007, vol. 11(1), 147-154.
 
4.
Dyrektywa Parlamentu Europejskiego i Rady 2009/73/WE z dnia 13 lipca 2009 r. dotycząca wspólnych zasad rynku wewnętrznego gazu ziemnego. Dziennik Urzędowy Unii Euro-pejskiej.14.8.2009. L211/94-L211/136.
 
5.
Kelner J.M.: Prognozowanie krótkoterminowe poborów gazu z sieci przesyłowych metodą sztucznych sieci neuronowych. Gaz, Woda i Technika Sanitarna, 2003, 6, 196-204.
 
6.
Kizilaslan R., Karlik B.: Comparison neural networks models for short term forecasting of natural gas consumption in Is-tanbul. In: Applications of digital information and web technologies, ICADIWT, 2008, 4-6 August 2008, 448-453.
 
7.
Nęcka K., Trojanowska M.: Short-term forecasting of natural gas demand by rural consumers using regression models. TEKA, 2014.
 
8.
Potocnik P., Govekar E., Grabec I.: Short-term natural gas consumption forecasting. In: Proceedings of the 16th IASTED International Conference on Applied Simulation and Modelling - ASM, 2007, 353-357.
 
9.
Soldo B.: Forecasting natural gas consumption. Applied Energy, 2012, vol. 92, 26-37.
 
10.
Trojanowska M., Lipczyńska D.: Analysing the variation in demands of rural households for natural gas. TEKA, 2014.
 
11.
Wdrożenie kodeksu bilansowania - szanse i wyzwania dla rynku gazu w obszarze dystrybucji. Polska Spółka Gazownictwa: TGE Warszawa, 2014.
 
12.
Yu F., Xu X.: A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network. Applied Energy, 2014, vol. 134, 102-113.
 
13.
Zeliaś A., Pawełek B., Wanat S.: Prognozowanie ekonomiczne. Warszawa: PWN, 2004. ISBN 83-01-14043-7.
 
14.
Zhou H., Su G., Li G.: Forecasting daily gas load with OIHF-Elman Neural Network. Procedia Computer Science, 2011, vol. 5, 754-758.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top