ORIGINAL PAPER
Forecasting of the daily demand for natural gas in rural households using the methods of artificial intelligence. Part II. Forecasting using fuzzy logic
 
 
 
More details
Hide details
1
University of Agriculture in Krakow, Department of Power Engineering and Agricultural Processes Automation, ul. Balicka 116B, 30-149 Kraków, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2015;60(2):65-67
 
KEYWORDS
ABSTRACT
In this paper, two fuzzy Takagi-Sugeno models were built to describe daily gas consumption of rural households using the Gaussian and trapezoidal membership function. It was found that the predictive values of both models are similar and satis-factory (MAPE 5.3-5.5%) and slightly better than in the case of the model of neural network when the BFGS algorithm was used for training, as shown in the first section of the study.
REFERENCES (10)
1.
Azadeh A., Asadzadeh S.M., Ghanbari A.: An adaptive net-work-based fuzzy inference system for short-term natural gas demand estimation: Uncertain and complex environments. Energy Policy, 2010, 38, 1529-1536.
 
2.
Behrouznia A., Saberi M., Azadeh A., Asadzadeh S.M., Pazhoheshfar P.: An adaptive network based fuzzy inference system-fuzzy data envelopment analysis for gas consumption forecasting and analysis: the case of South America. In: International conference on intelligent and advanced systems. ICIAS 2010, Article number 5716160. et al.
 
3.
Findeisen W., Szymanowski J., Wierzbicki A.: Teoria i metody obliczeniowe optymalizacji. Warszawa: WNT, 1977.
 
4.
Małopolski J., Trojanowska M.: Modele rozmyte zapotrzebowania na moc dla potrzeb krótkoterminowego prognozowania zużycia energii elektrycznej na wsi. Część I. Algorytmy wyznaczania modeli rozmytych. Inżynieria Rolnicza, 2009, 5 (114), 177-183.
 
5.
Nęcka K., Trojanowska M. Małopolski J.: Forecasting the daily demand for natural gas in rural households using the methods of artificial intelligence. Part I. Forecasting using artificial neural networks. Journal of Research and Applications in Agricultural Engineering, 2015, 2.
 
6.
Osowski S.: Sieci neuronowe w ujęciu algorytmicznym. Warszawa: WNT, 1996.
 
7.
Piegat A.: Modelowanie i sterowanie rozmyte. Warszawa: AOW EXIT, 1999.
 
8.
Soldo B.: Forecasting natural gas consumption. Applied Energy, 2012, 92, 26-37.
 
9.
Takagi T. Sugeno M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Transactions on Systems, Man, and Cybernetics, 1985, 15(1), 116-132.
 
10.
Zeliaś A., Pawełek B., Wanat S.: Prognozowanie ekonomiczne. Warszawa: PWN, 2004.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top