Herbal-plant Residues as Potential Raw Materials Source for Particleboard Production: A Review
 
More details
Hide details
1
Łukasiewicz Research Network – Poznan Institute of Technology, Poznan, Poland
 
 
Submission date: 2023-09-05
 
 
Acceptance date: 2024-07-26
 
 
Online publication date: 2024-02-08
 
 
Publication date: 2024-02-08
 
 
Journal of Research and Applications in Agricultural Engineering 2024;69(1)
 
REFERENCES (118)
1.
Z. Sydow, M. Sydow, Ł. Wojciechowski, and K. Bieńczak, “Tribological Performance of Composites Reinforced with the Agricultural, Industrial and Post-Consumer Wastes: A Review,” Materials, vol. 14, no. 8, p. 1863, Apr. 2021, doi: 10.3390/ma14081863. .
 
2.
​[2] D. Łukawski, P. Hochmańska-Kaniewska, D. Janiszewska-Latterini, and A. Lekawa-Raus, “Functional materials based on wood, carbon nanotubes, and graphene: manufacturing, applications, and green perspectives,” Wood Sci Technol, no. 0123456789, Aug. 2023, doi: 10.1007/s00226-023-01484-4. .
 
3.
​[3] M. Kozłowska-Burdziak and A. Sadowski, “Produkcja ziół w województwie podlaskim i możliwości jej zwiększenia w ocenie rolników 1,” Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu, vol. 15, no. 1, 2011. .
 
4.
​[4] D. Olewnicki, L. Jabłońska, P. Orliński, and Ł. Gontar, “Zmiany w krajowej produkcji zielarskiej i wybranych rodzajach przetwórstwa ro ś lin zielarskich w kontek ś cie globalnego wzrostu popytu na te produkty Changes in Polish domestic production of herbal plants and in selected types of enterprises that proces,” Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie Problemy Rolnictwa Światowego, vol. 15, no. 1, pp. 68–76, 2015. .
 
5.
​[5] E. Osińska and E. Pióro-Jabrucka, Uprawa i przetwórstwo roślin zielarskich. Brwinów: Centrum Doradztwa Rolniczego w Brwinowie, 2022. .
 
6.
​[6] E. Wrzesińska-Jędrusiak, K. Klimek, A. B. Najda, B. Łaska-Zieja, and A. Olesienkiewicz, “Badania potencjału produkcji biogazu z odpadów zielarskich,” Przemysł chemiczny, vol. 1, no. 2, pp. 66–69, Feb. 2020, doi: 10.15199/62.2020.2.7. .
 
7.
​[7] J. Weisbrod, Możliwości wykorzystania surowców zielarskich w pozażywnościowej działalności gospodarczej, I., vol. I. Olsztyn: Warmińsko-Mazurski Ośrodek Doradztwa Rolniczego z siedzibą w Olsztynie, 2022, p. 11. .
 
8.
​[8] W. Niemiec, T. Trzepieciński, and F. Stachowicz, “Cultivation of herbal plants as a method to management of wasteland in the Dynowskie Foothils,” in Protection of natural and cultural heritage as the essence of sustainable socio-economic development in the Dynowskie Foothils, J. Krupa and K. Szpara, Eds., DYNÓW: Związek Gmin Turystycznych Pogórza Dynowskiego, 2018, pp. 227–238. .
 
9.
​[9] M. Pędzik, D. Janiszewska, and T. Rogoziński, “Alternative lignocellulosic raw materials in particleboard production: A review,” Ind Crops Prod, vol. 174, no. October, 2021, doi: 10.1016/j.indcrop.2021.114162. .
 
10.
​[10] European Commission, EU biodiversity strategy : bringing nature back into our lives. Publications Office, 2020. doi: doi/10.2779/9896. .
 
11.
​[11] M. Pędzik, R. Auriga, L. Kristak, P. Antov, and T. Rogoziński, “Physical and Mechanical Properties of Particleboard Produced with Addition of Walnut (Juglans regia L.) Wood Residues,” Materials, vol. 15, no. 4, 2022, doi: 10.3390/ma15041280. .
 
12.
​[12] S. H. Lee et al., “Particleboard from agricultural biomass and recycled wood waste: a review,” Journal of Materials Research and Technology, vol. 20, pp. 4630–4658, 2022, doi: 10.1016/j.jmrt.2022.08.166. .
 
13.
​[13] F. Rusch, É. Hillig, E. Chagas Mustefaga, R. Trevisan, J. G. Prata, and G. de Magalhães Miranda, “Particleboard experimental production with bamboo, pine and mate for one product of new applications,” Maderas-Cienc Tecnol, vol. 25, no. SE-Article, Jan. 2023. .
 
14.
​[14] M. Pędzik, K. Tomczak, D. Janiszewska-Latterini, A. Tomczak, and T. Rogoziński, “Management of Forest Residues as a Raw Material for the Production of Particleboards,” Forests, vol. 13, no. 11, 2022, doi: 10.3390/f13111933. .
 
15.
​[15] L. Astari, Sudarmanto, S. S. Kusumah, F. Akbar, and K. W. Prasetiyo, “Quality of particleboard made from rattan waste,” IOP Conf Ser Earth Environ Sci, vol. 374, no. 1, 2019, doi: 10.1088/1755-1315/374/1/012009. .
 
16.
​[16] S. Bardak, G. Nemli, B. Sari, M. Baharoglu, and E. Zekovic, “Manufacture and properties of particleboard composite from waste sanding dusts,” High Temperature Materials and Processes, vol. 29, no. 3, pp. 159–168, 2010, doi: 10.1515/HTMP.2010.29.3.159. .
 
17.
​[17] M. R. A. Karim, D. Tahir, E. U. Haq, A. Hussain, and M. S. Malik, “Natural fibres as promising environmental-friendly reinforcements for polymer composites,” Polymers and Polymer Composites, vol. 29, no. 4, pp. 277–300, 2021, doi: 10.1177/0967391120913723. .
 
18.
​[18] N. S. Sadeq, Z. G. Mohammadsalih, and D. Ali, “Natural fibers and their applications : A review,” vol. 1, no. 2, pp. 51–63, 2022. .
 
19.
​[19] A. A. Owodunni et al., “Adhesive application on particleboard from natural fibers: A review,” Polym Compos, vol. 41, no. 11, pp. 4448–4460, 2020, doi: 10.1002/pc.25749. .
 
20.
​[20] A. Felipe, D. Oviedo, B. Azdrúbal, R. Valencia, G. Guillermo, and M. Contreras, “Physical-Chemical Characterization of Cocoa Pod Husk for Possible Use in the Making of Chipboards,” International Journal of Engineering Research and Technology, vol. 14, no. 9, pp. 876–880, 2021. .
 
21.
​[21] N. H. Adnan and N. S. Amil, “Composition Percentage and fibre orientation impact on the particle board ’ s properties,” International Journal of Engineering Advanced Research, vol. 4, no. 3, pp. 119–131, 2022. .
 
22.
​[22] N. A. Amenaghawon, W. Osayuki-Aguebor, and C. O. Okieimen, “Production of particle boards from corn cobs and cassava stalks: Optimisation of mechanical properties using response surface methodology,” Journal of Materials and Environmental Science, vol. 7, no. 4, pp. 1236–1244, 2016. .
 
23.
​[23] O. Atoyebi et al., “Evaluation of particle board from sugarcane bagasse and corn cob,” International Journal of Mechanical Engineering and Technology, vol. 10, no. 1, pp. 1193–1200, 2019. .
 
24.
​[24] A. de Melo Barbosa, G. Machado dos Santos, G. M. Medeiros de Melo, H. A. Litaiff, L. G. Martorano, and V. M. Giacon, “Evaluation of the use of açaí seed residue as reinforcement in polymeric composite,” Polymers and Polymer Composites, vol. 30, p. 096739112211083, Jan. 2022, doi: 10.1177/09673911221108307. .
 
25.
​[25] A. A. Abdulqader, “Efficient utilization of corn stalk and poplar planer shavings in manufacturing particleboard,” Maderas: Ciencia y Tecnologia, vol. 23, no. 23, pp. 1–10, 2021, doi: 10.4067/S0718-221X2021000100449. .
 
26.
​[26] A. Adefris Legesse, S. Amare Gebremeskel, V. Paramasivam, and S. K. Selvaraj, “Development and characterization of bamboo - sesame stalk hybrid urea-formaldehyde matrix composite for particleboard application,” Mater Today Proc, vol. 46, pp. 7351–7358, Jan. 2021, doi: 10.1016/j.matpr.2020.12.1026. .
 
27.
​[27] D. Battegazzore, J. Alongi, D. Duraccio, and A. Frache, “Reuse and Valorisation of Hemp Fibres and Rice Husk Particles for Fire Resistant Fibreboards and Particleboards,” J Polym Environ, vol. 26, no. 9, pp. 3731–3744, Sep. 2018, doi: 10.1007/s10924-018-1250-3. .
 
28.
​[28] A. Khazaeian, A. Ashori, and M. Y. Dizaj, “Suitability of sorghum stalk fibers for production of particleboard,” Carbohydr Polym, vol. 120, pp. 15–21, Apr. 2015, doi: 10.1016/j.carbpol.2014.12.001. .
 
29.
​[29] L. Kadhim Jawad, A. A. Beddai, M. Ali Nasser, and M. Kadhim Mejbel, “Scrutinizing the physical and strength properties of fabricated date palm frond leaves particleboard,” Mater Today Proc, vol. 57, pp. 980–988, 2022, doi: 10.1016/j.matpr.2022.03.396. .
 
30.
​[30] D. E. Teixeira, K. L. Sanchez, and A. C. R. de Carvalho, “Medium density particleboard using postharvest sugarcane leaf staw: Effect of resin type and content, density and layers arrangement,” Floresta, vol. 51, no. 3, p. 576, Jun. 2021, doi: 10.5380/rf.v51i3.70986. .
 
31.
​[31] J. A. Newton and J. J. Morrell, “Utilization of Ground Peanut Husk as an Alternative Fiber Material for Particleboard,” For Prod J, vol. 70, no. 4, pp. 416–419, Nov. 2020, doi: 10.13073/FPJ-D-20-00027. .
 
32.
​[32] M. S. Win, E. E. Phyone, and S. Win, “The Effect of Binder Concentration on the Mechanical and Physical Properties of Particleboard Prepared by using Luffa Fiber ( Luffa cylindrica L . ) and Urea-formaldehyde,” in 2nd International Conference on Engineering Education and Innovation, Myanmar, 2019, pp. 35–38. .
 
33.
​[33] D. Dukarska, R. Czarnecki, D. Dziurka, and R. Mirski, “Construction particleboards made from rapeseed straw glued with hybrid pMDI/PF resin,” European Journal of Wood and Wood Products, vol. 75, no. 2, pp. 175–184, Mar. 2017, doi: 10.1007/s00107-016-1143-x. .
 
34.
​[34] A. Chandran, A. Ismail, B. Charles, and T. T. Thejal, “Particle board using rice husk and coconut fibre . Tablero de partículas con cáscara de arroz y fibra de coco,” Sustainability, Agri, Food and Environmental Research, vol. 11, no. 10, 2022, doi: http://dx.doi.org/10.7770/safe....
 
35.
​[35] “FAOSTAT.” Accessed: Apr. 21, 2022. [Online]. Available: https://www.fao.org/faostat/en....
 
36.
​[36] S. Obidziński, “Pelletization process of postproduction plant waste,” Int Agrophys, vol. 26, no. 3, pp. 279–284, 2012, doi: 10.2478/v10247-012-0040-8. .
 
37.
​[37] A. Sienkiewicz, A. Piotrowska-Niczyporuk, and A. Bajguz, “Herbal Industry Wastes as Potential Materials for Biofuel Production,” p. 6, 2020, doi: 10.3390/proceedings2020051006. .
 
38.
​[38] T. Marczuk, M. Jałbrzykowski, S. Obidziński, and P. Berestiuk, “The impact of the amount of binder and starch content in binder on the amount of the pelleted fraction in the process of non-pressure agglomeration of nettle waste,” Journal of Research and Applications in Agricultural Engineering, vol. 62, no. 1, pp. 144–148, 2017. .
 
39.
​[39] Z. Kobus et al., “Analiza możliwości uzyskania olejków eterycznych z odpadów roślin zielarskich,” Inżynieria Rolnicza, vol. 1, no. 149, pp. 59–64, 2014. .
 
40.
​[40] X. Su et al., “Co-production of polysaccharides, ginsenosides and succinic acid from Panax ginseng residue: A typical industrial herbal waste,” Bioresour Technol, vol. 331, no. February, p. 125073, 2021, doi: 10.1016/j.biortech.2021.125073. .
 
41.
​[41] A. Lewicki et al., “The biogas production from herbs and waste from herbal industry,” Journal of Research and Applications in Agricultural Engineering, vol. 58, no. 1, pp. 114–117, 2013. .
 
42.
​[42] M. Habán, D. Luščáková, M. Macák, and K. Ražná, “Vplyv polyfunkčného osevného postupu na úrodu plodov pestreca mariánskeho v rokoch 2012 – 2015,” Journal of Central European Agriculture, vol. 17, no. 4, pp. 1096–1103, 2016, doi: 10.5513/JCEA01/17.4.1816. .
 
43.
​[43] L. Abenavoli, A. A. Izzo, N. Milić, C. Cicala, A. Santini, and R. Capasso, “Milk thistle ( Silybum marianum ): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases,” Phytotherapy Research, vol. 32, no. 11, pp. 2202–2213, Nov. 2018, doi: 10.1002/ptr.6171. .
 
44.
​[44] M. Javeria and K. Hussain, “Relationship between different agro-climatic conditions and silymarin production in wild milk thistle (Silybum marianum L. Gaert.) in Pakistan,” Pak J Bot, vol. 54, no. 1, pp. 179–185, Feb. 2022, doi: 10.30848/PJB2022-1(12). .
 
45.
​[45] S. Ebrahimian, A. Pirzad, J. Jalilian, and A. Rahimi, “The Effect of Micronutrients Supplementation (Fe, Zn, B, and Mn) on Antioxidant Activity of Milk Thistle (Silybum marianum L.) under Rainfed Condition,” 2021. doi: 10.22092/JMPB.2021.123781. .
 
46.
​[46] P. Montemurro, M. Fracchiolla, and A. Lonigro, “Effects of Some Environmental Factors on Seed Germination and Spreading Potentials of Silybum marianum Gaertner,” Italian Journal of Agronomy, vol. 2, no. 3, p. 315, Sep. 2007, doi: 10.4081/ija.2007.315. .
 
47.
​[47] V. Valková, H. Ďúranová, J. Bilčíková, and M. Habán, “Milk thistle (silybum marianum): a valuable medicinal plant with several therapeutic purposes,” Journal of microbiology, biotechnology and food sciences, vol. 9, no. 4, pp. 836–843, Feb. 2020, doi: 10.15414/jmbfs.2020.9.4.836-843. .
 
48.
​[48] R. Marceddu, L. Dinolfo, A. Carrubba, M. Sarno, and G. Di Miceli, “Milk Thistle (Silybum Marianum L.) as a Novel Multipurpose Crop for Agriculture in Marginal Environments: A Review,” Agronomy, vol. 12, no. 3, 2022, doi: 10.3390/agronomy12030729. .
 
49.
​[49] A. Rosińska, “The occurrence of fungi on the commercial dietary supplements based on the milk thistle (Silybum marianum (L.) Gaertn.) available on Polish market,” Herba Polonica, vol. 68, no. 1, pp. 29–34, 2022, doi: 10.2478/hepo-2022-0005. .
 
50.
​[50] V. Liava, A. Karkanis, and N. Tsiropoulos, “Yield and silymarin content in milk thistle (Silybum marianum (L.) Gaertn.) fruits affected by the nitrogen fertilizers,” Ind Crops Prod, vol. 171, p. 113955, Nov. 2021, doi: 10.1016/j.indcrop.2021.113955. .
 
51.
​[51] T. Martinelli, “Identification of milk thistle shatter-resistant mutant lines with altered lignocellulosic profile for the complete domestication of the species,” Crop Sci, 2019, doi: 10.2135/cropsci2019.02.0103. .
 
52.
​[52] J. Gominho, M. D. Curt, A. Lourenço, J. Fernández, and H. Pereira, “Cynara cardunculus L. as a biomass and multi-purpose crop: A review of 30 years of research,” Biomass Bioenergy, vol. 109, no. November 2017, pp. 257–275, Feb. 2018, doi: 10.1016/j.biombioe.2018.01.001. .
 
53.
​[53] T. Martinelli, “Plant morphology, vegetative biomass composition and energy content of three different Silybum marianum accessions,” Acta Scientiarum Polonorum Hortorum Cultus, vol. 19, no. 6, pp. 71–78, Dec. 2020, doi: 10.24326/asphc.2020.6.6. .
 
54.
​[54] T. Doğru and N. Eruygur, “Silybum marianum L. Gaertn.,” in Novel Drug Targets With Traditional Herbal Medicines, F. T. Gürağaç Dereli, M. Ilhan, and T. Belwal, Eds., Cham: Springer International Publishing, 2022, pp. 543–552. doi: 10.1007/978-3-031-07753-1_35. .
 
55.
​[55] I. Marmouzi, A. Bouyahya, S. M. Ezzat, M. El Jemli, and M. Kharbach, “The food plant Silybum marianum (L.) Gaertn.: Phytochemistry, Ethnopharmacology and clinical evidence,” Journal of Ethnopharmacology, vol. 265. Elsevier, p. 113303, Jan. 30, 2021. doi: 10.1016/j.jep.2020.113303. .
 
56.
​[56] L. Sulas, G. A. Re, S. Bullitta, and G. Piluzza, “Chemical and productive properties of two Sardinian milk thistle (Silybum marianum (L.) Gaertn.) populations as sources of nutrients and antioxidants,” Genet Resour Crop Evol, vol. 63, no. 2, pp. 315–326, Feb. 2016, doi: 10.1007/s10722-015-0251-5. .
 
57.
​[57] V. A. Cianchino, L. S. Favier, C. A. Ortega, C. Peralta, and D. A. Cifuente, “Formulation development and evaluation of Silybum marianum tablets,” Rodriguésia, vol. 71, 2020, doi: 10.1590/2175-7860202071044. .
 
58.
​[58] O. Porwal, M. S. Mohammed Ameen, E. T. Anwer, S. Uthirapathy, J. Ahamad, and A. Tahsin, “Silybum marianum (Milk Thistle): Review on Its chemistry, morphology, ethno medical uses, phytochemistry and pharmacological activities,” Journal of Drug Delivery and Therapeutics, vol. 9, no. 5, pp. 199–206, Sep. 2019, doi: 10.22270/jddt.v9i5.3666. .
 
59.
​[59] H. Darvishi-Khezri et al., “Can Use of Silymarin Improve Inflammatory Status in Patients with β-Thalassemia Major? A Crossover, Randomized Controlled Trial,” Complement Med Res, vol. 28, no. 2, pp. 123–130, 2021, doi: 10.1159/000509829. .
 
60.
​[60] S. Ali et al., “The potential of cultivated milk thistle by-products as cancer chemopreventive and anti-inflammatory drugs,” Egyptian Pharmaceutical Journal, vol. 18, no. 4, p. 411, 2019, doi: 10.4103/epj.epj_34_19. .
 
61.
​[61] R. R. Prasad, S. Paudel, K. Raina, and R. Agarwal, “Silibinin and non-melanoma skin cancers,” J Tradit Complement Med, vol. 10, no. 3, pp. 236–244, May 2020, doi: 10.1016/j.jtcme.2020.02.003. .
 
62.
​[62] Z. Saberi, N. Gorji, Z. Memariani, R. Moeini, H. Shirafkan, and M. Amiri, “Evaluation of the effect of Silybum marianum extract on menopausal symptoms: A randomized, double‐blind placebo‐controlled trial,” Phytotherapy Research, vol. 34, no. 12, pp. 3359–3366, Dec. 2020, doi: 10.1002/ptr.6789. .
 
63.
​[63] W. El-Houseiny et al., “Alleviative effects of dietary Silybum marianum and co-enzyme Q10 on waterborne nickel-induced impaired growth, immunosuppression, tissue damage, immune-related genes dysregulation, and reduced resistance to Pseudomonas aeruginosa in Oreochromis niloticus,” Aquac Rep, vol. 26, p. 101308, Oct. 2022, doi: 10.1016/j.aqrep.2022.101308. .
 
64.
​[64] T. M. Mahmoodi, A. Pirmani, S. Sharafi, and S. Y. Seta, “Evaluation of Yield, Yield Component, and Essential Properties of Pot Marigold (Calendula officinalis L.) under Water Stress and Urea,” Curr Appl Sci Technol, vol. 22, no. 5, pp. 1–10, 2021, doi: 10.55003/cast.2022.05.22.014. .
 
65.
​[65] F. Baniasadi, V. R. Saffari, and A. A. Maghsoudi Moud, “Physiological and growth responses of Calendula officinalis L. plants to the interaction effects of polyamines and salt stress,” Sci Hortic, vol. 234, no. December 2017, pp. 312–317, Apr. 2018, doi: 10.1016/j.scienta.2018.02.069. .
 
66.
​[66] Z. Kheyri, M. Moghaddam, and N. Farhadi, “Inoculation Efficiency of Different Mycorrhizal Species on Growth, Nutrient Uptake, and Antioxidant Capacity of Calendula officinalis L.: a Comparative Study,” J Soil Sci Plant Nutr, vol. 22, no. 1, pp. 1160–1172, 2022, doi: 10.1007/s42729-021-00721-8. .
 
67.
​[67] A. Szopa and M. Klimek-Szczykutowicz, “POT MARIGOLD (Calendula officinalis L.) – A POSITION IN CLASSICAL PHYTOTHERAPY AND NEWLY DOCUMENTED ACTIVITIES,” Acta Scientiarum Polonorum Hortorum Cultus, vol. 19, no. 3, pp. 47–61, Apr. 2020, doi: 10.24326/asphc.2020.3.5. .
 
68.
​[68] J. Vora, A. Srivastava, and H. Modi, “Antibacterial and antioxidant strategies for acne treatment through plant extracts,” Inform Med Unlocked, vol. 13, no. October 2017, pp. 128–132, 2018, doi: 10.1016/j.imu.2017.10.005. .
 
69.
​[69] B. Król, “Plon i jakość nasion nagietka lekarskiego (Calendula officinalis L.) w zależności od zagęszczenia roślin w łanie,” Annales Universitatis Mariae Curie-Skłodowska, sectio E, Agricultura, vol. 72, no. 3, pp. 11–25, 2017, doi: 10.24326/as.2017.3.2. .
 
70.
​[70] B. Król and T. Paszko, “Harvest date as a factor affecting crop yield, oil content and fatty acid composition of the seeds of calendula ( Calendula officinalis L.) cultivars,” Ind Crops Prod, vol. 97, pp. 242–251, Mar. 2017, doi: 10.1016/j.indcrop.2016.12.029. .
 
71.
​[71] R. Mordalski, W. Buchwald, E. Bilińska, H. Zalińska, and W. A. Kucharski, “Wpływ metod odchwaszczania plantacji na plonowanie i zawartość olejku w kwiatostanach wybranych odmian nagietka lekarskiego (Calendula officinalis L.),” Postępy Fitoterapii, vol. 21, no. 1, Mar. 2020, doi: 10.25121/PF.2020.21.1.3. .
 
72.
​[72] R. Nurzynska-Wierdak, “Wzrost, plon i składniki chemiczne surowca wybranych odmian nagietka lekarskiego (Calendula officinalis L.),” Annales Universitatis Mariae Curie-Skłodowska. Sectio EEE: Horticultura, vol. 24, no. 2, 2014. .
 
73.
​[73] J. A. Poveda-Giraldo and C. A. Cardona Alzate, “A biorefinery for the valorization of marigold (Calendula officinalis) residues to produce biogas and phenolic compounds,” Food and Bioproducts Processing, vol. 125, pp. 91–104, 2021, doi: 10.1016/j.fbp.2020.10.015. .
 
74.
​[74] R. John and N. Jan, “Calendula Officinalis-An Important Medicinal Plant with Potential Biological Properties,” Proceedings of the Indian National Science Academy, vol. 93, Aug. 2017, doi: 10.16943/ptinsa/2017/49126. .
 
75.
​[75] O. Sytar, I. Hemmerich, M. Zivcak, C. Rauh, and M. Brestic, “Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants,” Saudi J Biol Sci, vol. 25, no. 4, pp. 631–641, May 2018, doi: 10.1016/j.sjbs.2016.01.036. .
 
76.
​[76] M. Shahen et al., “Effect of antibiotic susceptibility, and inhibitory activity for the control of growth and survival of microorganisms of extracts of Calendula officinalis,” vol. 1, pp. 1–9, May 2019, doi: 10.34104/ejmhs.019. .
 
77.
​[77] P. K. Verma, R. Raina, S. Agarwal, and H. Kour, “Phytochemical ingredients and pharmacological potential of Calendula officinalis Linn.,” Pharmaceutical and Biomedical Research, Dec. 2018, doi: 10.18502/pbr.v4i2.214. .
 
78.
​[78] Z. Pedram Rad, J. Mokhtari, and M. Abbasi, “Preparation and characterization of Calendula officinalis-loaded PCL/gum arabic nanocomposite scaffolds for wound healing applications,” Iranian Polymer Journal, vol. 28, no. 1, pp. 51–63, Jan. 2019, doi: 10.1007/s13726-018-0674-x. .
 
79.
​[79] B. Krochmal-Marczak and A. Kiełtyka-Dadasiewicz, “Wpływ temperatury wody i czasu parzenia na właściwości antyoksydacyjne naparów z nagietka lekarskiego (Calendula officinalis L.),” HERBALISM, vol. 4, no. 1, pp. 43–51, Dec. 2021, doi: 10.12775/HERB.2018.004. .
 
80.
​[80] A. K. Mishra, A. Mishra, Pragya, and P. Chattopadhyay, “Screening of acute and sub-chronic dermal toxicity of Calendula officinalis L essential oil,” Regulatory Toxicology and Pharmacology, vol. 98, pp. 184–189, Oct. 2018, doi: 10.1016/j.yrtph.2018.07.027. .
 
81.
​[81] M. Ledrhem et al., “Essential Oils Derived from Cistus Species Activate Mitochondria by Inducing SIRT1 Expression in Human Keratinocytes, Leading to Senescence Inhibition,” Molecules, vol. 27, no. 7, p. 2053, Mar. 2022, doi: 10.3390/molecules27072053. .
 
82.
​[82] A. Papadopoulos, G. Kyzas, and A. Mitropoulos, “Lignocellulosic Composites from Acetylated Sunflower Stalks,” Applied Sciences, vol. 9, no. 4, p. 646, Feb. 2019, doi: 10.3390/app9040646. .
 
83.
​[83] R. Catoni, L. Gratani, and L. Varone, “Physiological, morphological and anatomical trait variations between winter and summer leaves of Cistus species,” Flora: Morphology, Distribution, Functional Ecology of Plants, vol. 207, no. 6, pp. 442–449, 2012, doi: 10.1016/j.flora.2012.02.007. .
 
84.
​[84] P. Kubica, A. Szopa, R. Ekiert, and H. Ekiert, “Gatunki rodzaju Cistus sp. – taksonomia, występowanie, skład chemiczny, aplikacje terapeutyczne i badania biotechnologiczne Species of the genus Cistus sp. – taxonomy, distribution, chemical composition and therapeutic applications and biotechnological st,” Postępy Fitoterapii, vol. 3, pp. 179–188, Jan. 2016. .
 
85.
​[85] M. D. Ferro et al., “Bioethanol production from steam explosion pretreated and alkali extracted Cistus ladanifer (rockrose),” Biochem Eng J, vol. 104, pp. 98–105, 2015, doi: 10.1016/j.bej.2015.04.009. .
 
86.
​[86] I. Zalegh et al., “A Review on Cistus sp.: Phytochemical and Antimicrobial Activities,” Plants, vol. 10, no. 6, p. 1214, Jun. 2021, doi: 10.3390/plants10061214. .
 
87.
​[87] H. Ouhaddou, A. Alaoui, S. Laaribya, and S. Ayan, “Ethnobotanical survey of medicinal plants used for treating diabetes in Agadir Ida Outanane region, Southwestern Morocco Halim,” Arabian Journal of Medicinal & Aromatic Plants, vol. 6, no. 2, pp. 72–86, 2020. .
 
88.
​[88] K. Sayah, I. Marmouzi, H. Naceiri Mrabti, Y. Cherrah, and M. E. A. Faouzi, “Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia,” Biomed Res Int, vol. 2017, pp. 1–7, 2017, doi: 10.1155/2017/2789482. .
 
89.
​[89] M. Barkaoui, A. Katiri, H. Boubaker, and F. Msanda, “Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco,” J Ethnopharmacol, vol. 198, pp. 338–350, Feb. 2017, doi: 10.1016/j.jep.2017.01.023. .
 
90.
​[90] A. S. Oliveira et al., “Thymus mastichina (L.) L. and Cistus ladanifer L. for skin application: Chemical characterization and in vitro bioactivity assessment,” J Ethnopharmacol, p. 115830, Oct. 2022, doi: 10.1016/j.jep.2022.115830. .
 
91.
​[91] F. R. Boy, R. Casquete, A. Martínez, M. de G. Córdoba, S. Ruíz-Moyano, and M. J. Benito, “Antioxidant, Antihypertensive and Antimicrobial Properties of Phenolic Compounds Obtained from Native Plants by Different Extraction Methods,” Int J Environ Res Public Health, vol. 18, no. 5, p. 2475, Mar. 2021, doi: 10.3390/ijerph18052475. .
 
92.
​[92] A. Morales-Soto et al., “Volatile profile of Spanish Cistus plants as sources of antimicrobials for industrial applications,” Ind Crops Prod, vol. 74, pp. 425–433, Nov. 2015, doi: 10.1016/j.indcrop.2015.04.034. .
 
93.
​[93] K. Gaweł-Bęben, W. Kukula-Koch, U. Hoian, M. Czop, M. Strzępek-Gomółka, and B. Antosiewicz, “Characterization of Cistus × incanus L. and Cistus ladanifer L. Extracts as Potential Multifunctional Antioxidant Ingredients for Skin Protecting Cosmetics,” Antioxidants, vol. 9, no. 3, p. 202, Mar. 2020, doi: 10.3390/antiox9030202. .
 
94.
​[94] E.-M. Tomou, K. Lytra, S. Rallis, A. G. Tzakos, and H. Skaltsa, “An updated review of genus Cistus L. since 2014: traditional uses, phytochemistry, and pharmacological properties,” Phytochemistry Reviews, vol. 21, no. 6, pp. 2049–2087, Dec. 2022, doi: 10.1007/s11101-022-09827-y. .
 
95.
​[95] B. Esteves, U. Sen, and H. Pereira, “Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis,” Energies (Basel), vol. 16, no. 10, p. 4226, May 2023, doi: 10.3390/en16104226. .
 
96.
​[96] T. Li et al., “Developing fibrillated cellulose as a sustainable technological material,” Nature, vol. 590, no. 7844, pp. 47–56, 2021, doi: 10.1038/s41586-020-03167-7. .
 
97.
​[97] S. Sun, J.-D. Mathias, E. Toussaint, and M. Grédiac, “Hygromechanical characterization of sunflower stems,” Ind Crops Prod, vol. 46, pp. 50–59, Apr. 2013, doi: 10.1016/j.indcrop.2013.01.009. .
 
98.
​[98] D. R. Letourneau and D. A. Volmer, “Mass spectrometry-based methods for the advanced characterization and structural analysis of lignin: A review,” Mass Spectrom Rev, no. June 2021, pp. 144–188, 2021, doi: 10.1002/mas.21716. .
 
99.
​[99] X. F. Zhou, “Catalytic conversion of lignin by immobilized Cu[H4]salen and [H2]salen complexes under hydrothermal conditions,” Drewno, vol. 63, no. 205, pp. 1–11, 2020, doi: 10.12841/wood.1644-3985.299.06. .
 
100.
​[100] A. Kumar and G. A. Kumar, “Modification of lignin properties using alpha particles and gamma-rays for diverse applications,” Radiation Physics and Chemistry, vol. 202, p. 110562, 2023, doi: https://doi.org/10.1016/j.radp....
 
101.
​[101] A. Boussetta, A. A. I. T. Benhamou, F. J. Barba, M. E. L. Idrissi, N. Grimi, and A. Moubarik, “Valorization of Solanum Elaeagnifolium Cavanilles Weeds as a New Lignocellulosic Source for the Formulation of Lignin-Urea-Formaldehyde Wood Adhesive,” J Adhes, vol. 99, no. 1, pp. 34–57, Jan. 2023, doi: 10.1080/00218464.2021.1999232. .
 
102.
​[102] D. S. Galdino et al., “Thermal and Gluing Properties of Phenol-Based Resin with Lignin for Potential Application in Structural Composites,” Polymers, vol. 15, no. 2. 2023. doi: 10.3390/polym15020357. .
 
103.
​[103] H. Younesi-Kordkheili and A. Pizzi, “A comparison among lignin modification methods on the properties of lignin–phenol–formaldehyde resin as wood adhesive,” Polymers (Basel), vol. 13, no. 20, 2021, doi: 10.3390/polym13203502. .
 
104.
​[104] M. Wesołowska-Trojanowska and Z. Targoński, “Hemicelulazy – właściwości, otrzymywanie i zastosowanie,” Engineering Sciences And Technologies, no. 2, 2015, doi: 10.15611/nit.2015.2.07. .
 
105.
​[105] X. Cao et al., “Effects of oxidative torrefaction on the physicochemical properties and pyrolysis products of hemicellulose in bamboo processing residues,” Ind Crops Prod, vol. 191, p. 115986, 2023, doi: https://doi.org/10.1016/j.indc....
 
106.
​[106] M. R. Pelaez-Samaniego, V. Yadama, T. Garcia-Perez, E. Lowell, and T. Amidon, “Effect of hot water extracted hardwood and softwood chips on particleboard properties,” Holzforschung, vol. 68, no. 7, pp. 807–815, 2014, doi: 10.1515/hf-2013-0150. .
 
107.
​[107] Tóth et al., “The influence of mineral nutrition and humic acids on the intensity of photosynthesis, as well as the yield and quality of seeds, roots, and aboveground phytomass of milk thistle Silybum marianum (L.) Gaertn. in marginal growing conditions,” European Pharmaceutical Journal, vol. 69, no. 1, pp. 27–36, 2022, doi: 10.2478/afpuc-2022-0003. .
 
108.
​[108] M. M. Rahman and I. Karacan, “The impact of eco-friendly chemical incorporation on the thermal oxidation process of flax fiber prior to carbonization and activation,” J Mater Sci, vol. 57, no. 3, pp. 2318–2333, Jan. 2022, doi: 10.1007/s10853-021-06686-4. .
 
109.
​[109] Y. Sun, D. Li, Y. Yu, J. Chen, and W. Fan, “Separation and Characterization of Cellulose Fibers from Cannabis Bast Using Foamed Nickel by Cathodic Electro-Fenton Oxidation Strategy,” Polymers (Basel), vol. 14, no. 3, p. 380, Jan. 2022, doi: 10.3390/polym14030380. .
 
110.
​[110] M. J. Díaz, C. Cara, E. Ruiz, M. Pérez-Bonilla, and E. Castro, “Hydrothermal pre-treatment and enzymatic hydrolysis of sunflower stalks,” Fuel, vol. 90, no. 11, pp. 3225–3229, 2011, doi: 10.1016/j.fuel.2011.06.040. .
 
111.
​[111] B. N. Kuznetsov et al., “Fractionation of birch wood biomass into valuable chemicals by the extraction and catalytic processes,” Biomass Convers Biorefin, no. 0123456789, Mar. 2022, doi: 10.1007/s13399-022-02498-x. .
 
112.
​[112] C. L. Williams, R. M. Emerson, and J. S. Tumuluru, “Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals,” in Biomass Volume Estimation and Valorization for Energy, InTech, 2017. doi: 10.5772/65777. .
 
113.
​[113] Tóth et al., “The influence of mineral nutrition and humic acids on the intensity of photosynthesis, as well as the yield and quality of seeds, roots, and aboveground phytomass of milk thistle Silybum marianum (L.) Gaertn. in marginal growing conditions,” European Pharmaceutical Journal, vol. 69, no. 1, pp. 27–36, 2022, doi: 10.2478/afpuc-2022-0003. .
 
114.
​[114] D. Dukarska, J. Łęcka, and R. Czarnecki, “The effect of wood chip substitution with evening primrose waste on properties of particleboard depending on the type of binding agent,” Electronic Journal of Polish Agricultural Universities , vol. 5, no. 2, 2012. .
 
115.
​[115] J. Walkiewicz, J. Kawalerczyk, R. Mirski, and Z. Szubert, “Short notes: The tea leaves as a filler for UF resin plywood production,” Wood Research, vol. 68, no. 1, pp. 200–207, Feb. 2023, doi: 10.37763/wr.1336-4561/68.1.200207. .
 
116.
​[116] H. Kolya and C.-W. Kang, “Herbal waste as a renewable resource for sound absorption: An eco-conscious approach for wall panel,” Journal of Building Engineering, vol. 82, p. 108249, Apr. 2024, doi: 10.1016/j.jobe.2023.108249. .
 
117.
​[117] H. Turgut Sahin and M. Burak Arslan, “Weathering performance of particleboards manufactured from blends of forest residues with Red pine (Pinus brutia) wood,” Maderas. Ciencia y tecnología, vol. 13, no. 3, pp. 337–346, 2011, doi: 10.4067/S0718-221X2011000300009. .
 
118.
​[118] E. S. A. El-Sayed, A. E. Elsayed, and S. Kamel, “Coated Particleboards based on Castor Stalk Waste as an Alternative to Artificial Wood: (Part II),” Egypt J Chem, vol. 65, no. 11, pp. 531–539, Sep. 2022, doi: 10.21608/ejchem.2022.156875.6803. .
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top