ORIGINAL PAPER
In vitro study on the use of quinoa (Chenopodium quinoa Willd.) extracts from to limit the development of phytopathogenic fungi
 
More details
Hide details
1
University of Agriculture in Krakow, Department of Agricultural Environment Protection, Al. Mickiewicza 21, 31-120 Kraków, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2016;61(3):132-138
 
KEYWORDS
ABSTRACT
The aim of the study was to search for alternatives to chemical fungicides currently used in plants protection against Botrytis cinerea, Rhizoctonia solani, Phoma exiqua var. exiqua, Sclerotinia sclerotiorum, Fusarium poae. Various concentrations of aqueous extracts of Chenopodium quinoa Willd leaves, stems and inflorescences were tested in the laboratory conditions. Antifungal activity of the extracts was evaluated based on surface growth and sporulation intensity of the test fungi. The applied concentrations of aqueous extracts (25.0, 10.0, 1.0 and 0.1 mm3·cm−3) significantly modified the examined parameters of particular fungi. The strongest fungistatic activity was noted for 25.0 mm3·cm−3 concentration of C. quinoa stems and inflorescences extracts with respect to B. cinerea. They limited this fungus linear growth by 42.9% and 53.3%, and sporulation by 53.6% and 67.85%, respectively. In turn, a very intense inhibition (53.5-88.3%) in S. sclerotiorum colony growth on the media with higher concentrations of all analyzed types of extracts was accompanied by stimulation of sporulation. The lowest concentration of the leaves extract in 43.1% inhibited the growth of mycelium and in 52.1% sporulation of P. exiqua var. exiqua. Unfortunately, most of the analyzed concentrations to a very little degree inhibited the surface growth of R. solani and F. poae hyphae.
REFERENCES (39)
1.
Aveskamp M.M., De Gruyter J., Crous P.W.: Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity, 2008, 31, 1-18.
 
2.
Bhargava A., Shukla S., Ohri D.: Chenopodium quinoa-an Indian perspective. Industrial Crops and Products, 2006, 23, 73-87.
 
3.
Blankson W. Amoabeng,, Geoff M., Gurr C., Gitau W., Stevenson C.: Cost: benefit analysis of botanical insecticide use in cabbage. Implications for smallholder farmers in developing countries. Crop Protection, 2014, 57, 71-76.
 
4.
Bokhari N.A., Siddiqui I., Perveen K., Siddique I., Soliman D.W.A.: Mycocidal ability of Toona ciliata against Rhizoctonia solani. J. Anim. Plant Sci., 2015, 25(5), 1477-1481.
 
5.
Botelho L.S., Zancan W.L.A., Machado J.C., Barrocas E.N.: Performance of common bean seeds infected by the fungus Sclerotinia sclerotiorum. Journal of Seed Science, 2013, 35(2), 153-160.
 
6.
Castillo F., Hernández D., Gallegos G., Rodríguez R., Aguilar C.N.: Antifungal Properties of Bioactive Compounds from Plants. In: Fungicides for Plant and Animal Diseases, 2012, 81-106.
 
7.
Cheng C.-H., Yang C.-A., Peng K.-C.: Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. Phytopathology, 2012, 102, 1054-1063.
 
8.
Damalas C.A., Eleftherohorinos I.G.: Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health., 2011, 8(5), 1402-1419. DOI: 10.3390/ijerph8051402.
 
9.
Dhingra O.D., Costa M.L.N., Silva JR. G.J, Mizubuti E.S.G.: Essential oil of mustard to control Rhizoctona solani seedling damping off and seedling blight in nursery. Fitopatologia brasileira, 2004, 29, 683-686.
 
10.
Dissanayake M., Jayasinghe J.: Antifungal activity of selected medicinal plant extracts against plant pathogenic fungi: Rhizoctonia solani, Colletotrichum musea and Fusarium oxysporum. International Journal of Science Inventions Today, 2013, 2(5), 421-431.
 
11.
El-Tarabily K.A.: Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. Journal of Applied Microbiology, 2004, 96, 69-75. DOI:10.1046/j.1365-2672.2003.02043.x.
 
12.
Gatto M.A., Ippolito A., Linsalata V., Cascarano N.A., Nigro F., Vanadia S., Di Venere D.: Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biology and Technology, 2011, 61, 72-82.
 
13.
Gleń K., Boligłowa E. Ocena aktywności fungistatycznej wyciągów roślinnych w testach in vitro. Journal of Research and Applications in Agricultural Engineering, 2012, 57(3), 104109.
 
14.
Gleń K.: Comparison of Fostar and Wapnovit foliar fertilizers effect in phytopathogenic fungi of genus Fusarium. Ecological Chemistry and Engineering, 2008, 15(1-2), 47-54.
 
15.
Gleń-Karolczyk K.: Fungi settling horseradish roots depending on the applied protection. Journal of Research and Applications in Agricultural Engineering, 2015, 60(3), 52-56.
 
16.
Hodges C.F: Vegetative growth and sporulation of Biopolaris sorokiniana on sequentially older infected leaves of Poa pratensis exposed to postemergence herbicides. Mycopathologia, 1994, 128 (2), 105-109.
 
17.
Kowalik R., Krechniak E.: Szczegółowa metodyka biologicznych i laboratoryjnych badań środków grzybobójczych. In: Materiały do metodyki badań biologicznej oceny środków ochrony roślin. IOR, Poznań, 1961.
 
18.
Lemańczyk G.: Occurrence of sharp eyespot in spring cereals grown in some regions of Poland. J. Plant Protection Res., 2010, 50(4), 505-512.
 
19.
Marcinkowska J., Roze-Kałużny I., Kałużny W.: Pathogenicity of some Phoma exiqua var. exiqua isolates. Phytopathol. Pol., 2005, 38, 35-44.
 
20.
Miranda M., Delatorre-Herrera J., Vega-Gálvez A., Jorquera E., Quispe-Fuentes I., Martínez E.A.: Antimicrobial Potential and Phytochemical Content of Six Diverse Sources of Quinoa Seeds (Chenopodium quinoa Willd.). Agricultural Sciences, 2014, 5, 1015-1024. http://dx.doi.org/10.4236/as.2....
 
21.
Mueller D.S., Dorrance A.E., Derksen R.C., Ozkan E., Kurle J.E., Grau C R., Gaska J.M., Hartman G.L., Bradley C.A., Pedersen W.L.: Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of Sclerotinia stem rot on soybean. Plant Dis., 2002, 86, 26-31.
 
22.
Ogoshi A.: Introduction - the genus Rhizoctonia. In. Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Eds. Sneh B, Jabaji-Hare S, Neate S, Dijst G. Kluwer Academic Publishers, The Netherlands, 1996, 1-9.
 
23.
Oirdi M.E., Bouarab K.: Plant signalling components EDS1 and SGT1enhance disease caused by the necrotrophic pathogen Botrytis cinerea. New Phytologist, 2007, 175, 131-139.
 
24.
Osman K.A., Al-Rehiayam S.: Risk assessment of pesticide to human and the environment. Saudi J. Biol. Sci., 2003, 10, 81-106.
 
25.
Pagno C.H., Costa T.M.H., de Menezes E.W., Benvenutti E.V., Hertz P.F., Matte C.R., Tosati J.V., Monteiro A.R., Rios A.O., Flôres S.H.: Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chemistry, 2015, 173, 755-762.
 
26.
Peltier A.J., Bradley C.A. Chilvers M.I., Malvick D.K., Mueller D.S., Wise K.A., Esker P.D.: Biology, Yield loss and Control of Sclerotinia Stem Rot of Soybean. Journal of Integrated Pest Management, 2012, 3(2), 1-7. DOI: http://dx.doi.org/10.1603/IPM1....
 
27.
Perveen K., Haseeb A., Shukla P.K.: Effect of Sclerotinia sclerotiorum on the disease development, growth, oil yield and biochemical changes in plants of Mentha arvensis. Saudi Journal of Biological Sciences, 2010, 17, 291-294.
 
28.
Quispe-Fuentes I., Vega-Gálvez A., Miranda M., LemusMondaca R., Lozano M., Ah-Hen K.: A kinetic approach to saponin extraction during washing of quinoa (Chenopodium quinoa willd.) seeds. Journal of Food Process Engineering, ISSN 2012, 1745-4530, pp 1-9. DOI:10.1111/j.17454530.2012.00673.
 
29.
Şesan T.E., Enache E., Iacomi B.M., Oprea M., Oancea F., Iacomi C.: Antifungal activity of some plant extracts against Botrytis cinerea Pers. in the blackcurrant crop (Ribes nigrum l.). Acta Sci. Pol., Hortorum Cultus, 2015, 14(1), 29-43.
 
30.
Singh M., Khatoon S., Singh V., Kumar, A.K.S. Rawat, Mehrotra S.: Antimicrobial screening of ethnobotanically important stem bark of medicinal plants. Pharmacognosy Res., 2010, 2(4), 254-257. DOI: 10.4103/0974-8490.69127.
 
31.
Stuardo M, San Martín R. Antifungal properties of quinoa (Chenopodium quinoa Willd) alkali treated saponins against Botrytis cinerea. Industrial Crops and Products, 2008, 27( 3), 296-302. ISSN: 0926-6690.
 
32.
Sun X., Mantri N., Ge J., Du Y., Wang G., Lu J., Jiang W., Lu H.: Inhibition of plant pathogens in vitro and in vivo with essential oil and organic extracts of Torreya grandis ‘Merrilli’ aril. Plant Omics Journal., 2014, 7(5), 337-344.
 
33.
Tripathi A.N., De R.K., Sharma H.K., Karmakar P.G.: Emerging threat of Sclerotinia sclerotiorum causing white/cottony stem rot of mesta in India. New Disease Reports, 2015, 32, 19. http://dx.doi.org/10.5197/j.20....
 
34.
Vilche C., Gely M., Santalla E.: Physical Properties of Quinoa Seeds. Biosystems Engineering, 2003, 86(1), 59-65. DOI:10.1016/S1537-5110(03)00114-4.
 
35.
Woldemichael G.M., Wink M.: Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. J Agric. Food Chem., 2001, 49, 2327-2332.
 
36.
Yadev N., Vasudeva N., Singh S., Sharma S.K.: Medicinal properties of genus Chenopodium Linn. Natural Product Radiance, 2007, 6(2), 131-134.
 
37.
Zhang J. X., Xue A. G.: Biocontrol of sclerotinia stem rot (Sclerotinia sclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathology, 2010, 59, 382- 391. DOI: 10.1111/j.1365-3059.2009.02227.x.
 
38.
Zhu N., Sheng S., Sang S., Jhoo S., Bai S., Karwe M., Rosen R., Ho C.: Triterpene saponins from debittered quinoa (Chenopodium quinoa) seeds. J. Agric. Food Chem., 2002, 50, 865-867.
 
39.
Zimowska B.: Characteristics and occurrence of Phoma spp. on herbs from the family Lamiaceae. Acta Sci. Pol., Hortorum Cultus, 2011, 10(2), 213-224.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top