ORIGINAL PAPER
Integration of software components for determination and analysis of properties of agri-food and forest products
More details
Hide details
1
Poznan University of Life Sciences, Institute of Biosystems Engineering, Department of Applied Informatics, ul. Wojska Polskiego 28, 60-637 Poznan, Poland
2
Poznan University of Life Sciences, Department of Mechanical Engineering and Thermal Techniques, ul. Wojska Polskiego 28, 60-637 Poznan, Poland
Journal of Research and Applications in Agricultural Engineering 2014;59(1):159-163
KEYWORDS
ABSTRACT
Knowledge of properties of agri-food and forest products is necessary to understand and predict their behavior in many
processing operations like heating, cooling and drying in which heat and water transport affect the final product quality.
It is difficult to represent properties of biomaterials in mathematical models to simulate the heat and water transport processes
- shape of biomaterials is complex, material structure is non-homogeneous and anisotropic, and properties are functions
of temperature and moisture content. Original algorithms and software components developed in earlier papers were
modified and integrated to improve accuracy and efficiency of identifying, predicting and analyzing properties of agri-food
and forest products. The integrated computer-aided approach was based on image analysis, geometry modeling and finite
element analysis for solving coefficient inverse problems of heat and water transport. The approach resulted in more accurate
predictions of investigated transport processes in biomaterials, and was more effective.
REFERENCES (23)
1.
Białobrzewski I., Zielińska M., Mujumdar A.S., Markowski M.: Heat and mass transfer during drying of a bed of shrinking particles – simulation for carrot cubes dried in a spoutfluidized-bed drier. International Journal of Heat and Mass Transfer, 2008, 51, 4704-4716.
2.
Frączek J.: Wykorzystanie elementów komputerowej analizy obrazu w modelowaniu kształtu nasion (Application of elements of computer image analysis to modeling seed shapes). Inżynieria Rolnicza, 2003, 11(53), 65-70.
3.
Frączek J., Wróbel M.: Zastosowanie grafiki komputerowej w rekonstrukcji 3D nasion (Using computer graphics for 3D reconstruction of seeds). Inżynieria Rolnicza, 2009, 6(115), 87-94.
4.
Frey P., George P.L.: Mesh Generation, 2nd ed., Wiley-ISTE, Hoboken, NJ, USA, 2008.
5.
Gomaa H.: Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures, Cambridge University Press, Cambridge, UK, 2011.
6.
Gonzalez R. C., Woods R.E.: Digital Image Processing, 3rd ed., Pearson Prentice Hall, Upper Saddle River, NJ, USA, 2008.
7.
Jaros M., Pabis S.: Theoretical Models for Fluid Bed Drying of Cut Vegetables. Biosystems Engineering, 2006, 93(1), 45-55.
8.
Jaros M., Trajer J.: Effect of carrot drying method on dried material quality. Annals of Warsaw Agricultural University. Agriculture, 2006, 49, 3-8.
9.
Łapczyńska-Kordon B., Francik S., Frączek J., Ślipek Z.: Modelowanie skurczu suszarniczego wybranych warzyw korzeniowych za pomocą sieci neuronowych (Modeling of dryling shrinkage for selected root vegetables using neural networks). Inżynieria Rolnicza, 2006, 13 (88), 303-311.
10.
Nagel C., Evjen B., Glynn J., Watson K., Skinner M.: Professional C# 2012 and .NET 4.5, Wrox (Wiley), Hoboken, NJ, USA, 2012.
11.
Nocedal, J., Wright S.: Numerical Optimization. 2nd ed., Springer, Berlin, DE, 2006.
12.
Olek W., Weres J.: Effects of the method of identification of the diffusion coefficient on accuracy of modeling bound water transfer in wood. Transport in Porous Media, 2007, 66(12), 135-144.
13.
Olek W., Perré P., Weres J.: Implementation of a relaxation equilibrium term in the convective boundary condition for a better representation of the transient bound water diffusion in wood. Wood Science and Technology, 2011, 45(4), 677-691.
14.
Pabis S., Jayas D.S., Cenkowski S.: Grain Drying: Theory and Practice, Wiley, Hoboken, NJ, USA, 1998.
15.
Pabis S., Jaros M.: The first period of the convection drying of vegetables and the effect of shape-dependent shrinkage. Biosystems Engineering, 2002, 81(2), 201-211.
16.
Ruszczyński, A.: Nonlinear Optimization. Princeton University Press, Princeton, NJ, USA, 2006.
17.
Shih F.Y.: Image Processing and Pattern Recognition: Fundamentals and Techniques, Wiley-IEEE Press Hoboken, NJ, USA, 2010.
18.
Sommerville I.: Software Engineering, 9th ed., Addison Wesley, Upper Saddle River, NJ, USA, 2010.
19.
Weres J., Jayas D.S.: Effects of corn kernel properties on predictions of moisture transport in the thin-layer drying of corn. Transactions of the ASAE, 1994, 37(5), 1695-1705.
20.
Weres J., Olek W., Kujawa S.: Comparison of optimization algorithms for inverse FEA of heat and mass transport in biomaterials. Journal of Theoretical and Applied Mechanics, 2009, 47(3), 701-716.
21.
Weres J.: Informatyczny system pozyskiwania danych o geometrii produktów rolniczych na przykładzie ziarniaka kukurydzy (Information system for acquiring data on geometry of agricultural products exemplified by a corn kernel). Inżynieria Rolnicza, 2010, 7(125), 229-236.
22.
Weres J., Kiecana M., Balcerzak K.: Two approaches to representing agri-food product geometry – an original software for constructing finite element models and the 3ds max approach. Journal of Research and Applications in Agricultural Engineering, 2014, 59(1).
23.
Zienkiewicz O.C., Taylor R.L., Zhu J.Z.: The finite element method: its basis and fundamentals, 7th ed., Elsevier: Butterworth-Heinemann, Oxford, UK, 2013.