ORIGINAL PAPER
Neural modelling of thermal processes during composting of chosen natural fertilizers
 
More details
Hide details
 
Journal of Research and Applications in Agricultural Engineering 2010;55(2):56-61
 
KEYWORDS
ABSTRACT
Composting process depends on microbiological decomposition of organic matter in oxygenic conditions proceeded by the thermopile microorganisms and moulds. During the process there is a lot of heat energy emission which can be used for different aims. There is no information about neural network used for modelling of composting processes in the world publications. The objective of presented work was to model the composting process of solid natural fertilizers using the artificial neural networks. I focused mainly on thermal analysis of this process. Qualification of heat emission as a result of exothermic reactions during composting process was the focus of attention. The second stage was complex analysis as well as creating, testing and verification of series of neural networks topology. The analytical software package Statistica v. 7.1: 'Neural Networks' was used. Low ratio of standard deviations and correlation coefficient close to one, provide the most important information for the good assessment of the neural network.
REFERENCES (8)
1.
Boniecki P.: Elementy modelowania neuronowego w rolnictwie. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu 2008.
 
2.
Burton C. H., Turner C.: Manure management. Treatment strategies for sustainable agriculture 2’nd edition. Silsoe Research Institute, Bedford 2003.
 
3.
Chan C. W., Huang G. H.: Artificial intelligence for management and control of pollution minimization and mitigation processes, Engineering applications of artificial intelligence, 2003, vol. 16, s. 75-90.
 
4.
Grzeszczyk T. A.: Sztuczna inteligencja we wspomaganiu procesu prognozowania w przedsiębiorstwie. Statystyka i Data Mining w badaniach naukowych. StatSoft Polska, Kraków 2005.
 
5.
Kosiński R.: Sztuczne sieci neuronowe, dynamika nieliniowa i chaos. Wydawnictwa Naukowo-Techniczne, Warszawa 2002.
 
6.
Marciniak A., Korbicz J., Kuś J.: Wstępne przetwarzanie danych. Biocybernetyka i inżynieria biomedyczna, tom 6, Sieci neuronowe – praca zbiorowa, Akademicka Oficyna Wydawnicza Exit, Warszawa 2000.
 
7.
Ozkaya B., Demir A., Bilgili M.S.: Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environmental Modelling & Software, 2007, vol. 22, s. 815-822.
 
8.
Romaniuk W., Overby T.: Magazynowanie nawozów naturalnych. Poradnik / Praca zbiorowa. Warszawa: Instytut Budownictwa, Mechanizacji i Elektryfikacji Rolnictwa; Duńskie Służby Doradztwa Rolniczego 2004.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top