ORIGINAL PAPER
Multiple regression analysis model to predict and simulate winter rapeseed yield
,
 
 
 
 
More details
Hide details
1
Poznan University of Life Sciences, Institute of Biosystems Engineering, Faculty of Agronomy and Bioengineering ul. Wojska Polskiego 50, 60-627 Poznań, Poland
 
2
Koszalin University of Technology, Department of Agrobiotechnology, Faculty of Mechanical Engineering ul. Racławicka 15-17, 75-620 Koszalin, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2018;63(4):139-144
 
KEYWORDS
ABSTRACT
The aim of the work is to create a model for prediction and simulation of winter rapeseed yield. The model made it possible to perform a yield forecast on 30 June, directly before harvest in the current agrotechnical season. The prediction model was built using the multiple regression method (MLR). The model was based on meteorological data (air temperature and precipitation) and information about mineral fertilization. The data were collected from the years 2008-2017 from 291 production fields located in Poland, in the southern Opole region. The assessment of the quality of forecasts generated on the basis of the regression model was verified by determining prediction errors using RAE, RMS, MAE and MAPE error meters. An important feature of the created prediction model concerns the possibility of making the forecast in the current agrotechnical year on the basis of the current weather and fertilizer information.
REFERENCES (22)
1.
Bussay A., van der Velde M., Fumagalli D., Seguini L.: Improving operational maize yield forecasting in Hungary. Agric. Syst., 2015, 141: 94–106.
 
2.
Diepenbrock W.: Yield analysis of winter oilseed rape (Brassica napus L.): A review. F. Crop. Res., 2000, 67: 35– 49.
 
3.
Domínguez J.A., Kumhálová J., Novák P.: Winter oilseed rape and winter wheat growth prediction using remote sensing methods. Plant, Soil Environ., 2015, 61: 410–416.
 
4.
Emamgholizadeh S., Parsaeian M., Baradaran M.: Seed yield prediction of sesame using artificial neural network. Eur. J. Agron., 2015, 68: 89–96.
 
5.
FAO: Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Online Statistical Service. http://faostat.fao.org. 2017.
 
6.
Farjam A., Omid M., Akram A., Fazel Niari Z.: A neural network based modeling and sensitivity analysis of energy inputs for predicting seed and grain corn yields. J. Agric. Sci. Technol., 2014, 16: 767–778.
 
7.
Guérif M., Duke C.: Calibration of the SUCROS emergence and early growth module for sugar beet using optical remote sensing data assimilation. Eur. J. Agron., 1998, 9: 127–136.
 
8.
Jiang C., Shi J., Li R., Long Y., Wang H., Li D., Zhao J., Meng J.: Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor. Appl. Genet., 2014, 127: 957–968.
 
9.
Kantanantha N., Serban N., Griffin P.: Yield and price forecasting for stochastic crop decision planning. J. Agric. Biol. Environ. Stat., 2010, 15: 362–380.
 
10.
Khairunniza-Bejo S., Mustaffha S., Ishak W., Ismail W.: Application of Artificial Neural Network in Predicting Crop Yield: A Review. J. Food Sci. Eng., 2014, 4: 1–9.
 
11.
Li F., Qiao J., Han H., Yang C.: A self-organizing cascade neural network with random weights for nonlinear system modeling. Appl. Soft Comput., 2016, 42: 184–193.
 
12.
Logan T.M., McLeod S., Guikema S.: Predictive models in horticulture: A case study with Royal Gala apples. Sci. Hortic. (Amsterdam)., 2016, 209: 201–213.
 
13.
Nelson G.C., Valin H., Sands R.D., Havlík P., Ahammad H., Deryng D., Elliott J., Fujimori S., Hasegawa T., Heyhoe E., Kyle P., Von Lampe M., Lotze-Campen H., Mason d’Croz D., van Meijl H., i wsp.: Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: 3274–9.
 
14.
Niazian M., Sadat-Noori S.A., Abdipour M.: Artificial neural network and multiple regression analysis models to predict essential oil content of ajowan (Carum copticum L.). J. Appl. Res. Med. Aromat. Plants, 2018, 9: 124–131.
 
15.
Niedbała G., Przybył J., Sęk T.: Prognosis of the content of sugar in the roots of sugar-beet with utilization of the regression and neural techniques. Agric. Engienering, 2007, 2: 225–234.
 
16.
Park S.J., Hwang C.S., Vlek P.L.G.: Comparison of adaptive techniques to predict crop yield response under varying soil and land management conditions. Agric. Syst., 2005, 85: 59–81.
 
17.
Shearer J.R., Burks T.F., Fulton J.P., Higgins S.F.: Yield Prediction Using A Neural Network Classifier Trained Using Soil Landscape Features and Soil Fertility Data . Annu. Int. Meet. Midwest Express Cent., 2000, 5–9.
 
18.
Stańko S.: Prognozowanie w agrobiznesie. Teoria i przykłady zastosowania. Wydawnictwo SGGW, Warszawa 2013.
 
19.
Trzepieciński T.: Zastosowanie regresji wielokrotnej i sieci neuronowej do modelowania zjawiska tarcia. Zesz. Nauk. WSInf, 2010, 9: 31–43.
 
20.
Vandendriessche H.J.: A model of growth and sugar accumulation of sugar beet for potential production conditions: SUBEMOpo I. Theory and model structure. Agric. Syst., 2000, 64: 21–35.
 
21.
Velička R., Marcinkevičienė A., Pupalienė R., Butkevičienė L.M., Kosteckas R., Čekanauskas S., Kriaučiūnienė Z.: Winter oilseed rape and weed competition in organic farming using non-chemical weed control. Zemdirbyste-Agriculture, 2016, 103: 11–20.
 
22.
Wenda-Piesik A., Hoppe S.: Evaluation of hybrid and population cultivars on standard and high-input technology in winter oilseed rape. Acta Agric. Scand. Sect. B — Soil Plant Sci., 2018, 1–12.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top