The usage of modern methods, which represent predictive neural techniques is an effective approach to the estimation of the processes occurring in the complex empirical systems of agricultural engineering. The artificial neural networks are a rapidly expanding field of knowledge used increasingly in many areas of science, as well as practice. The learning algorithms, enabling the design of appropriate network topology and selection of the parameters of this structure, matched to the problem to be solved are the basis of functioning of artificial neural networks. The paper proposes the use of neural modeling techniques to estimate the level of methane content in the biogas emitted over the methane fermentation process of silage. Obtained research results confirm the hypothesis that predictive neural model describing the methane production during the silage fermentation process in biofermentor is an appropriate tool to assess the forecasting of the level of this emission.
REFERENCES(18)
1.
Adamski M., Pilarski K., Dach J.: Możliwości wykorzystania wywaru gorzelnianego jako substratu w biogazowni rolniczej. Journal of Research and Applications in Agricultural Engineering, 2009, Vol. 54 (3): 10-15.
Amon T., Amon B., Kryvoruchko V., Machmuller A. Methane production though anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technology, 2007, 98: 3204–3212.
Dach J., Zbytek Z., Pilarski K., Adamski M.: Badania efektywności wykorzystania odpadów z produkcji biopaliw jako substratu w biogazowni. Technika Rolnicza Ogrodnicza Leśna, 2009, nr 6: 7-9.
Edelmann, W., Schleiss, K., Joss, A.: Ecological, energetic and economic comparison of anaerobic digestion with different competing technologies to treat biogenic wastes. Water Sci. Technol., 2000, 41 (3): 263–273.
Fugol M., Szlachta J.: Zasadność używania kiszonki z kukurydzy i gnojowicy świńskiej do produkcji biogazu. Inżynieria Rolnicza, 2010, nr 1 (119): 169-174.
Pilarski K., Dach J., Mioduszewska N.: Porównanie wydajności produkcji metanu z gnojowicy świńskiej i bydlęcej z dodatkiem gliceryny rafinowanej. Journal of Research and Applications in Agricultural Engineering, 2010, Vol. 55(2): 78-81.
Przybył J., Mioduszewska N., Dach J., Pilarski K.: Sugar beet used for traditional purposes and for energy. An economic comparison. Inżynieria Rolnicza, 2011, 7 (132): 131-140.
Szlachta J., Fugol M.: Analiza możliwości produkcji biogazu na bazie gnojowicy oraz kiszonki z kukurydzy. Inżynieria Rolnicza, 2009, nr 5 (114): 275-280.
Vedrenne, F., Beline, F., Dabert, P., Bernet, N.: The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes. Bioresource Technology, 2008, 99: 146–155.
Zhou Mo, Pilarski K.: The preliminary comparison of biogas productivity between maize silage and maize straw silage. Journal of Research and Applications in Agricultural Engineering, 2011, Vol. 56 (2): 88-91.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.