ORIGINAL PAPER
Neuronal identification of the chosen cereal pests on the basis of information contained in the form of two-dimensional pictures
 
More details
Hide details
 
Journal of Research and Applications in Agricultural Engineering 2007;52(1):30-36
 
KEYWORDS
ABSTRACT
Digital signal processing (DSP) is the science and technology domain dealing with signals in a digital representation and the processing methods of these signals. DSP and analog signal processing are subfields of signal processing. Since the goal of DSP is usually to measure or filter continuous real-world analog signals, the first step is usually to convert the signal from an analog to a digital form, by using an analog to digital converter. Often, the required output signal is another analog input signal for neuronal models. The neuronal pictures analysis is then a new field of digital processing of signals. It is possible to use it to identification of chosen objects given in the form of bitmap.
REFERENCES (6)
1.
Boniecki P., Przybył J., (2006)., Autoasocjacyjna sieć neuronowa jako narzędzie do nieliniowej kompresji danych: Journal of Research and Applications in Agricultural Engineering (1 '2006), str. 37-41.
 
2.
Tadeusiewicz R., Flasiński M., (1991). Rozpoznawanie obrazów: Wydawnictwo Naukowe PWN, Warszawa.
 
3.
Mirkut Z., Tadeusiewicz R., (2000). Sieci neuronowe tom 6: Akademicka Witryna Wydawnicza EXIT, Warszawa.
 
4.
Boniecki P., (2004). Sieci neuronowe typu MLP oraz RGB jako komplementarne modele aproksymacyjne w procesie predykcji plonu pszenżyta: Journal of Research and Applications in Agricultural Engineering, POZNAŃ, (1'2004), Vol. 49(1), str. 28-33.
 
5.
Kohorda P., Tadeusiewicz R., (1999). Komputerowa analiza i przetwarzanie obrazów: Drukarnia Narodowa, Kraków.
 
6.
Boniecki P., Piekarska-Boniecka H., (2004). The SOFM Neural Network in the Process of Identification of Selected Orchard Pests: Journal of Research and Applications in Agricultural Engineering, Vol 49(4), p. 5-10, Poznań.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top