ORIGINAL PAPER
Numerical analysis of front axle bracket strength in farm tractor
,
 
,
 
,
 
,
 
,
 
 
 
 
More details
Hide details
1
The Lublin University of Technology, Mechanic Faculty, Chair of Applied Mechanics
 
2
The Polish Air Force Academy in Dęblin, Faculty of Aviation, Chair of Airframe and Engine
 
3
URSUS BUS S.A., Lublin, Poland
 
4
The Opole University of Technology, Faculty of Production Engineering, Chair of Biosystems Engineering
 
 
Journal of Research and Applications in Agricultural Engineering 2017;62(2):109-112
 
KEYWORDS
ABSTRACT
This paper describes strength evaluation for D4CS4 FA20.25 bracket, mounted in tractors of the URSUS Company. The analysis was based on stress modelling, supported by the finite element method (FEM). It was assumed in the model that the studied element was made of ductile cast iron and subject to three forces at three support points. Stress distribution simulations were run for various boundary conditions in order to identify the areas most exposed to cracking hazards. On this basis, engineering changes were introduced to increase the mechanical strength of the bracket with maximum cost-effectiveness of its production.
REFERENCES (20)
1.
Debski H., Teter A., Kubiak T., Samborski S.: Local buckling, post-buckling and collapse of thin-walled channel section composite columns subjected to quasi-static compression. Composite Structures, 2016, 593-601.
 
2.
Dyląg Z., Jakubowicz A., Orłoś Z.: Wytrzymałość materiałów, WNT, 2013.
 
3.
Ellobody E., Feng R., Young B.: Finite element analysis and design of metal structures. Waltham, MA: Butterworth-Heinemann, 2014.
 
4.
Gawęcki A.: Mechanika materiałów i konstrukcji prętowych. Poznań: Alma Mater, 2003.
 
5.
German J.: Podstawy i zastosowanie mechaniki pękania w zagadnieniach inżynierskich. Kraków, 2004.
 
6.
Guzik E.: Procesy uszlachetniania żeliwa: Wybrane zagadnienia. Katowice: PAN, 2001.
 
7.
Hartmann F., Katz C. Structural Analysis with Finite Elements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.
 
8.
Khennane A.: Introduction to finite element analysis using MATLAB and Abaqus. Boca Raton: CRC Press, 2013.
 
9.
Komorzycji C., Teter A.: Podstawy statyki i wytrzymałości materiałów. Lublin: Wydawnictwa Uczelniane PL, 2000.
 
10.
Kubiak T., Samborski S., Teter A.: Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method. Composite Structures, 2015, 921-929.
 
11.
Long Y., Cen S., Long Z.: Advanced Finite Element Method in Structural Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
 
12.
Turner M.J., Clough R.W., Martin H.C., Topp L.J.: Stiffness and Deflection Analysis of Complex Structures. J. of Aero. Sci., 23 (9), 1956.
 
13.
Niezgodziński T., Niezgodziński M.E.: Wytrzymałość materiałów. Wydawnictwo Naukowe PWN, 2009.
 
14.
Pietrowski S., Gumienny G.: Ocena jakości żeliwa sferoidalnego EN-GJS-400-15 metodą ATD. Archiwum Odlewnictwa, 2002, 2(6), 257-268.
 
15.
Pietrzakowski M.: Wytrzymałość materiałów. Warszawa: Studio MULTIGRAF Sp. z o.o. Company, 2010.
 
16.
Rakowski G., Kacprzyk Z.: Metoda elementów skończonych w mechanice konstrukcji. Warszawa: Publishing House of the Warsaw University of Technology, 2016.
 
17.
Rusiński E., Czmochowski J., Smolnicki T.: Zaawansowana metoda elementów skończonych w konstrukcjach nośnych. Publishing House of the Wrocław University of Technology, 2000.
 
18.
Simulia. Abaqus 6.14. Abaqus/CAE User's Guide. Providence, RI, USA: Dassault Systèmes, 2014.
 
19.
Teter A, Debski H, Samborski S.: On buckling collapse and failure analysis of thin-walled composite lipped-channel columns subjected to uniaxial compression. Thin-Walled Structures, 2014, 324-331.
 
20.
Zienkiewicz O.C.: Metoda elementów skończonych. Warszawa: Arkady, 1972.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top