ORIGINAL PAPER
Productivity of crop rotations and selected indicators of soil fertility in different types of ecological farms
More details
Hide details
1
Institute of Soil Science and Plant Cultivation - State Research Institute Czartoryskich 8, 24-100 Puławy, Poland
Journal of Research and Applications in Agricultural Engineering 2017;62(3):153-157
KEYWORDS
ABSTRACT
These studies are based on a field experiment carried out in the years 2011-2016 at RZD IUNG-PIB in Grabów. The experiment consisted of three crop rotations differing with respect to leguminous crops included in these rotation, reflecting three different types of ecological (organic) farms. Crop rotation A, representing a dairy farm, consisted of: maize - cerealpulse mixture (undersown with grass-red clover) - grass-red clover ley (year I) - grass-red clover ley (year II) - winter wheat. Crop rotation B, representing a pig farm, included: maize - spring barley - cereal-pulse mixture - pea - winter wheat. Crop rotation C, representing a farm without livestock, consisted of: maize - cereal mixture - spring wheat (undersown with red clover) - red clover - winter wheat. The objective of this study was to assess the presented crop rotations with respect to their productivity and effects on yields of particular crops and basic soil fertility indicators. Among the compared rotations the highest productivity in terms of cereal units was obtained in the case of crop rotation A representing the dairy farming system, and the lowest productivity in the case of rotation B representing the livestock (pig) farming system. During the 6-year experimental period no significant differences were found between the compared rotations with respect to phosphorus content in the soil. Potassium contents in the soil of rotations A and C were lower than in rotation B. The compared ecological farming systems had minor effects on soil microbial activity indicators. Dehydrogenase activity and glomalin contents were lowest while hot water extracted C was highest in the soil of rotation B as compared to the soil of rotations A and C.
REFERENCES (18)
1.
Casida LE, Klein DA, Santoro T.: Soil dehydrogenase activity. Soil Sci., 1964, 98, 371-379.
2.
Fließbach A., Oberholzer H.R., Gunst L., Mader P.: Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems and Environment, 2007, 118, 273-284.
3.
Fotyma M., Kęsik K., Pietruch Cz.: Azot mineralny w glebach jako wskaźnik potrzeb nawozowych roślin i stanu czystości wód glebowo-gruntowych. Nawozy i Nawożenie, 2010, 8, 5-80.
4.
Ghani A, Dexter M, Perrott KW.: Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biol. Biochem., 2003. 35, 1231-1243.
5.
Gosling P., Shepherd M.: Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agriculture, Ecosystems and Environment, 2005, (105), 425-432.
6.
Haberle J., Martin K.: Simulation of nitrogen leaching and nitrate concentration in a long-term field experiment. Journal of Central European Agriculture, 2012, 13(3), 416-425.
7.
Jadczyszyn T., Pietruch Cz., Lipiński W.: Monitoring zawartości azotu mineralnego w glebach Polski w latach 2007-2009. Nawozy i Nawożenie, 2010, 38, 84-110.
8.
Joergensen RG, Mueller T.: The fumigation extraction method to estimate soil microbial biomass: calibration of the kEC-factor. Soil Biol. Biochem., 1996, 28, 25-31.
9.
Jończyk K.: Ocena wykorzystania i strat azotu w ekologicznym i konwencjonalnym systemie produkcji roślinnej. Wybrane zagadnienia ekologiczne we współczesnym rolnictwie. Monografia, tom 2, 2005, 77-83.
10.
Jończyk K., Kuś J., Stalenga J.: Produkcyjne i środowiskowe skutki różnych systemów gospodarowania. Prob. Inż. Rol., 2007, vol. XV, 1(55), 13-22.
11.
Jung R., Schmidtke K., Rauber R.: N2 - Fixierleistung und N - Flachenbilanzsaldo beim Anbau von Luzerne, Rotklee und Persischen Klee. Beitrage zur 8. Wissenschaftstagung Ökologischer Landbau, Kassel, 1-4 Marz 2005, 261-264.
12.
Köpke U.: Nutrient management in organic farming systems - the case of nitrogen. Biol. Agric. Hortic., 1995, 11, 15-29.
13.
Mäder P, Fließbach A, Dubois D, Gunst L, Fried P and Niggli U.: Soil Fertility and Biodiversity in Organic Farming. Science, 2002, 296, 1694-1697.
14.
Martyniuk S., Księżniak A., Jończyk K., Kuś J.: Charakterystyka mikrobiologiczna gleby pod pszenicą ozimą uprawianą w systemie ekologicznym i konwencjonalnym. Journal of Research and Applications in Agricutural Engineering, 2007, Vol. 52(3), 113-116.
15.
Schneider R., Heiles E., Salzeder G., Wiesinger K., Schmidt M. & Urbatzka P.: Auswirkungen unterschiedlicher Fruchtfolgen im ökologischen Landbau auf den Ertrag und die Produktivität. In: Wiesinger K und Cais K (Hrsg.): Angewandte Forschung und Beratung für den ökologischen Landbau in Bayern. Ökolandbautag 2012, Tagungsband - Schriftenreihe der LfL 2012, 4, 87-93.
16.
Stalenga J.: Ocena stanu zrównoważenia gospodarki nawozowej w wybranych gospodarstwach ekologicznych w rejonie Brodnicy. Journal of Research and Applications in Agricultural Engineering, 2010, Vol. 55(4), 117-120.
17.
Stalenga J., Jończyk K., Kuś J.: Bilans składników pokarmowych w ekologicznym i konwencjonalnym systemie produkcji roślinnej. Annales UMCS, Sec. E, 2004, t. 59, z. 1, 383-389.
18.
Wright S.F., Upadhyaya A.: A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 1998, 198, 97-107.