ORIGINAL PAPER
Prediction of CH4 emissions from enteric fermentation and livestock farming with the use of artificial neural network Flexible Byesian Models
 
More details
Hide details
 
Journal of Research and Applications in Agricultural Engineering 2011;56(2):90-93
 
KEYWORDS
ABSTRACT
The aim of presented study was to forecast the CH4 emissions from livestock production in Poland and the potential emissions from enteric fermentation of animals. Predictions were carried out using artificial neural network Flexible Byesian Models. Correlations of selected terms of the factors considered in relation to the parameters were examined using Pearson's test.
REFERENCES (8)
1.
Compassion in World Farming, 2006, Global Warming: climate change and farm Animal welfare, ISBN 978-83-61608-12-7, Surrey, www.ciwf.org.uk/includes/ documents/cm_docs/2008/g/global_warning_summary.pdf.
 
2.
Gibbs M., Conneely D., Johnson D., Lasse K. R., Ulyatt M. J.: CH4 Emissions from enteric fermentation. (In:) Background Papers - IPCC Expert Meetings on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. The Institute for Global Environmental Strategies, Japan, 2002, http://www.ipcc-nggip.iges.or.....
 
3.
Główny Urząd Statystyczny, www.stat.gov.pl.
 
4.
Neal R.: Flexible Bayesian Models on Neural Networks, Gaussian Processes, and Mixtures v. 2004-11-10. University of Toronto, Toronto.
 
5.
Ochrona Środowiska, Informacje i opracowania statystyczne, GUS Warszawa, 2000-2009.
 
6.
Smith P., Bertaglia M., 2007, Greenhouse gas mitigation in agriculture, Encyclopedia of Earth, Cutler J. Cleveland, Washington, www.eoearth.org/article/Greenhouse _gas_mitigation_in_agriculture.
 
7.
Steinfeld H. a. al.: Livestock’s Long Shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations, Rome, 2006. www.virtualcentre.org/en/library/key_pub/longshad/A070 1E00.htm.
 
8.
Zaliwski A.S.: Emisja gazów cieplarnianych przez rolnictwo. Studia i Raporty IUNG-PIB, Puławy, 2007, zeszyt 4.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top