ORIGINAL PAPER
Search for ecological methods to enlarge symbiotic nitrogen fixation efficiency by pea (Pisum sativum L.)
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
Institute of Soil Science and Plant Cultivation - State Research Institute, ul. Czartoryskich 8, 24-100 Puławy, Poland
 
2
Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2015;60(4):67-70
 
KEYWORDS
ABSTRACT
Conducted till now studies on symbiosis of papilionaceous plants and rhizobia discovered the genetic background of this phenomenon and allowed to identify numerous plant and bacteria metabolites involved in the process of starting of symbiosis and development of nodules. One of this compounds are flavonoids, recognised as signal particles participating in information exchange between a bacteria and a plant, affecting among others nodules formation on papilionaceous plants. These compounds are often submitted to processes which decrease their concentration on the way from a producer to a destined organism, they diffuse or break-up in the soil solution and are degraded by soil microorganisms. It can be then assumed that their insufficient amount is a cause of low efficient symbiosis, what considerably limits plant supply with nitrogen and decreases their yielding. An effect of use of flavonoid extract obtained from germinating seeds on ontogenesis, forming of physiological growth indexes and yielding of pea was evaluated in these studies. Application of a flavonoid preparation increased, among others, the number and weight of nodules and activity of nitrogenase, what in a consequence led to production of greater mass of vegetative and generative organs by pea plants.
REFERENCES (27)
1.
Evans G.C.: The quantitative analysis of plant growth. Studies in ecology. University of California Press. Berkeley and Los Angeles, 1972.
 
2.
Gabryś H.: Nitrogen management. In: Plant Physiology. Kopcewicz J., Lewak S. Warszawa: PWN, 2002, 246-258.
 
3.
Hassan S., Mathesius U.: The role of flavonoids in rootrhizosphere signaling: opportunities and challenges for improving plant-microbe interactions. J. Exp. Bot., 2012, 63(9), 3429-3444.
 
4.
Janczarek M., Urbanik-Sypniewska T., Skorupska A.: Effect of authentic flavonoids and the exudate of clover roots on growth rate and inducing ability of nod genes of Rhizobium leguminosarum bv. Trifolii. Microbiol. Res., 1997, 152, 93-98.
 
5.
Jones K.M., Kobayashi H., Davies B.W., Taga M.E., Walker G.C.: How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat. Rev. Microbiol., 2007, 5, 619-633.
 
6.
Kidaj D., Wielbo J., Skorupska A.: Nod factors stimulate seed germination and promote growth and nodulation of pea and vetch under competitive conditions. Microbiol. Res., 2012, 167(3), 144-150.
 
7.
Maj D., Wielbo J., Marek-Kozaczuk M., Skorupska A.: Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiol. Res., 2010, 165, 50-60.
 
8.
Martyniuk S.: Production of microbial preparations: symbiotic bacteria of legumes as an ex ample. J. Res. Appl. Agric. Engng, 2010, 55, 20-23.
 
9.
Niewiadomska A., Swedrzyńska D.: The effect of simultaneous inoculation alfalfa (Medicago sativa L.) with strains of Sinorhizobium meliloti and Herbaspirillum frisinense in relation to occurring interactions among bacteria strains. Arch. Environ. Protect., 2011, 37(4), 37-47.
 
10.
Novák K., Chovanec P., Škrdleta V., Kropácová M., Lisá L., Nemcová M. 2002. Effect of exogenous flavonoids on pea (Pisum sativum L.). J. Exp. Bot., 2002, 53(375), 1735-1745.
 
11.
Osiecka A. The Legumes. In: Gacek ES (Ed.), Polish National List of Agricultural Plant Varieties. Part 2. Research Center for Cultivar Testing, Słupia Wielka, 2014, 112-122.
 
12.
Ovtsyna A.O., Schultze M., Tikhonovich I. A., Spaink H.P., Kondorosi E., Kondorosi A., Staehelin C.: Nod factors of Rhizobium leguminosarum bv. viciae and their fucosylated derivatives stimulate a Nod factor cleaving activity in pea roots and are hydrolyzed in vitro by plant chitinases at different rates. Mol. Plant-Microbe Interact., 2000, 13, 799-807.
 
13.
Peoples M.B., Brockwell J., Herridge D.F., Rochester I.J., Alves B.J.R., Urquiaga S., Boddey R.M., Dakora F.D., Bhattarai S., Maskey S.L., Sampet C., Rerkasem B., Khan D.F., Haugaard-Nielsen H., Jensen E.S.: The contribution of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis, 2009, 48, 1-17.
 
14.
Perret X., Staehelin C., Spaink H.P.: Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev., 2000, 64, 180-201.
 
15.
Podleśny J., Wielbo J., Podleśna A., Kidaj D.: The pleiotropic effects of rhizobial lipochitooligosaccharides on growth, development and field of pea (Pisum sativum L.). Cent. Eur. J. Biol., 2014, 9(4), 398-409.
 
16.
Podleśny J., Wielbo J., Podleśna A., Kidaj D.: Usefulness of Nod preparation (LCOs) use to presowing dressing of pea seeds (Pisum sativum L.). J. Res. Appl. Agric. Engng, 2013, 58(4), 124-129.
 
17.
Podleśny J., Wielbo J., Podleśna A., Kidaj D.: The responses of two pea genotypes to Nod factor (LCOS) treatment. J. Food Agric. Environ., 2014, 12(2), 554-558.
 
18.
Prithiviraj B., Zhou X., Souleimanov A., Kahn W.M., Smith D.L.: A host-specific bacteria-to-plant signal molecule (Nod factor) enhances germination and early growth of diverse crop plants. Planta, 2003, 216: 437-445.
 
19.
Schneider A.: Overview of the market and consumption of pulses in Europe. British J. Nutrition, 2002, 88, 243-250.
 
20.
Siczek A., Lipiec J., Wielbo J., Szarlip P., Kidaj D.: Pea growth and symbiotic activity response to Nod factors (lipochitooligosaccharides) and soil compaction. Appl. Soil Ecol., 2013, 72, 181-186.
 
21.
Siczek A., Frac M.,, Nawrocka A., Wielbo J., Kidaj D.: The response of rhizosphere microbial properties to flavonoids and Nod factors. Acta Agric. Scand., Sec. B - Soil & Plant Science, 2015, 125, 2, 125-131.
 
22.
Timmers A.C., Soupene E., Auriac M.C., de Billy F., Vasse J., Boistrad P., Truchet G.: Saprophytic intracellular rhizobia in alfalfa nodules. Mol. Plant-Microbe Interact., 2000, 13, 1204-1213.
 
23.
Vasse J., de Billy F., Camut S., Truchet G.: Correlation between ultrastructural differentiation of bacteroides and nitrogen fixation in alfalfa nodules. J. Bacteriol., 1990, 172, 4295-4306.
 
24.
Voisin A.S., Munier-Jolain N.G., Salon Ch.: The nodulation process is tightly adjusted to plant growth. An analysis using environmentally and genetically induced variation of nodule number and biomass in pea. Plant Soil, 2010, 337, 399-412.
 
25.
Voisin A.S.: Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agron. Sustain. Dev., 2014, 34, 361-380.
 
26.
Wielbo J., Kuske J.: The competition between Rhizobium leguminosarum bv. Viciae strains progresses until late stages of symbiosis. Plant Soil, 2010, 337, 125-135.
 
27.
Wojcieska U., Giza A., Wolska E., Łyszcz S.: The dynamics of growth and nutrient uptake by field peas cvs. Ramir and Koral. I. The dynamics of weight increments and plant yield. Pam. Puł., 1993, 102, 119-133.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top