ORIGINAL PAPER
The effect of organic and clay fraction on polycyclic aromatic hydrocarbons mobility in soil model systems
 
More details
Hide details
1
Poznań University of Life Sciences, Department of Biotechnology and Food Microbiology, ul. Wojska Polskiego 48, 60-627 Poznań, Poland
 
2
Poznań University of Life Sciences, Institute of Food Technology of Plant Origin, ul. Wojska Polskiego 31, 60-624 Poznań, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2015;60(1):98-101
 
KEYWORDS
ABSTRACT
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds, which accumulation in arable land is highly unfavorable phenomenon due to their toxic properties and adverse effects on yield as well as growth of plants. In order to determine the degree of PAHs exposure, the research on the sorption and accumulation of PAHs in various components of the soil is indispensable. The aim of this study was to define the effect of the organic and clay fraction on the mobility of PAHs. Experiments were carried out in column systems and the following solid phases (sorbents) were applied: a quartz sand (a control), a mixture of quartz sand and humic acids, a mixture of quartz sand and clay mineral - montmorillonite and systems combined with quartz sand, montmorillonite and humic acids. As a labile phase, the aqueous solution of phenanthrene (concentration of 0,5 mg•l-1) was used. Quantification of PAHs in the eluate was carried out by a photoluminescence method. The obtained results indicate that the increase of both clay fraction and the humic acids resulted in an increase in the sorption of phenanthrene on a solid matrix. Moreover, the montmorillonite showed higher sorption than humic acids added in the form of a commercial preparation. Thus, it can be assumed that the soils characterized by favorable agronomic properties (a lot of clay fraction and organic matter) are particularly susceptible to the accumulation of organic compounds (e.g. PAHs). Additionally, this kind of soil - due to immobilization - is characterized by smaller capacity of natural bioremediation. These conclusions points to the need for monitoring of arable land, particularly areas with high emissions of PAHs to the environment.
REFERENCES (15)
1.
IUNG w Puławach: Monitoring chemizmu gleb ornych w Polsce w latach 2010-2012 (raport końcowy) 2012. http://www.gios.gov.pl/zalaczn....
 
2.
Chrząścik J., Szymalska M., Kluska M.: Zanieczyszczenie wybranych próbek stałych węglowodorami aromatycznymi przy trasach wylotowych z miasta Olecko. Studia Ecologiae et Bioethicae, 2007, Vol. 5: 295-304.
 
3.
Oleszczuk P.: Zanieczyszczenia organiczne w glebach użyźnianych osadami ściekowymi część II. Losy zanieczyszczeń w glebie. Ecological chemistry and engineering, 2007, Vol. 14: 185-198.
 
4.
Oleszczuk P.: Biodostepność i bioakumulacja hydrofobowych zanieczyszczeń organicznych. Część II. Sorpcja zanieczyszczeń oraz czynniki wpływające na ten proces. Biotechnologia, 2007, Vol. 1 (76): 26-39.
 
5.
Műller S., Totsche U., Kőgel-Knabner I.: Sorption of polycyclic aromatic hydrocarbons to mineral surfaces. European Journal of Soil Science, 2007, Vol. 58: 918-931.
 
6.
Smol M., Włodarczyk-Makuła M. Wółka D.: Adsorption of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution on different sorbents. Civil and Environmental Engineering Reports, 2014, Vol. 13(2): 87-96.
 
7.
Kőgel-Knabner I., Totsche U.: Sorption and desorption of polycyclic aromatic hydrocarbons (PAHs) to individual constituents of natural and contaminated soils. http://natres.psu.ac.th/Link/S....
 
8.
Kurpińska I.: Problemy związane z występowaniem substancji humusowych w wodach podziemnych. Inżynieria środowiska, 2012, Vol. 28: 55-72.
 
9.
Cheftez B., Deshmukh P., Hatcher E., Guthrie E.: Pyrene sorption by natural organic matter. Environmental science & technology, 2000, Vol. 34: 2925-2930.
 
10.
Fąfara Z., Borysławska E.: Badania laboratoryjne sorpcji produktów naftowych w gruntach ilastych. Wiertnictwo Nafta Gaz, 2011: Vol. 28: 137-147.
 
11.
Lahlou M., Ortega-Calvo J.: Bioavailability of labile and desorption-resistant phenanthrene sorbed to montomrillonite clay containing humic fractions. Environmental Toxicology and Chemistry, 1999, Vol. 18: 2729-2735.
 
12.
Liu A., Gonzalez R.: Adsorption/desorption in a system consisting of humic acid, heavy metals and clay minerals. Journal of colloid and interface science, 1999, Vol. 218: 225-232.
 
13.
Fitch A., Du J.: Solute transport in clay media: Effect of humic acids. Environmental Science and Technology, 1996, Vol. 30: 12-15.
 
14.
Rothe J., Denecke M., Dardene K.: Soft X-ray spectromicroscopy investigation of the interaction of aquatic humic acid and clay colloids. Journal of Colloid and Interface Science, 2000, Vol. 231: 91-97.
 
15.
Jaruwong P., Wibulswas R.: Influence of organo-clay’s carbon number on the adsorption of humic acid. Asian Journal on Energy & Environment, 2003, Vol. 4: 41-59.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top