ORIGINAL PAPER
The identification and quantification of factors determining soil compaction caused by single agricultural tyres on a field
 
More details
Hide details
1
Poznan University of Life Sciences, Institute of Biosystems Engineering Wojska Polskiego 28, 60-637 Poznań, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2018;63(4):24-30
 
KEYWORDS
ABSTRACT
In field research, the influence of factors determining soil compaction in an arable layer caused by agricultural tyres during the first pass was determined. The factors were the following: a normal load of tyres resulting from a static load of a tractor axle, dimensions of tyres: diameter, and width as well as pressure determined by a simplified method. The research was conducted on soil cultivated with ploughing – Luvisol loamy sand. It was generally shown that tyre load was the main determinant of soil compressing. A bigger tyre load leads to higher soil density only in a deeper arable layer. Higher soil density caused by bigger tyres is the result of their higher load rather than their higher external diameter. Wider driving tyres of a similar diameter caused only slightly lower soil density mainly at a greater depth in an arable layer. Pressure determined by a simplified method is not correlated with soil density changed by tyres. A soil density increment caused by the investigated tyres was from approx. 30% to approx. 65% of the whole growth potential.
REFERENCES (29)
1.
Soane B.D., Van Ouverkerk C.: Soil compaction in crop production. Elsevier Science, 1994.
 
2.
Hamza M.A., Anderson W.K.: Soil compaction in cropping systems. A review of the nature, causes and possible solutions. Soil & Till. Res., 2005, 82, 121–145.
 
3.
Mordhorst A., Peth S., Horn R.: Influence of mechanical loading on static and dynamic C02 efflux on differently textured and managed Luvisol. Geoderma, 2014, 219-220, 1-13.
 
4.
Oskoui K.E., Voorhees W.B.: Economic consequences of soil compaction. Transactions of the ASAE, 1991, 34, 6, 2317-2323.
 
5.
Soane B.D.: The role of field traffic studies in soil management research. Soil & Till. Res., 1980, 1, 205–237.
 
6.
Bakker D.M., Davis R.J.: Soil deformation observations in a Vertisol under field traffic. Aust. J. Soil Res., 1995, 33, 817–832.
 
7.
Koger J.L., Burt C.E., Trouse A.C.: Multiple Pass Effects of Skidder Tires on Soil Compaction. Transaction of the ASAE, 1985, 28, 1, 11-16.
 
8.
Smith D.L.O., Dickson J.W.: Contribution of vehicle weight and ground pressure to soil compaction. J. Agric. Engn. Res., 1990, 46, 13-29.
 
9.
Błaszkiewicz Z.: Wpływ obciążenia trójpunktowego układu zawieszenia wybranych ciągników rolniczych i ciśnienia wewnętrznego w ogumieniu na zagęszczenie gleby lekkiej w koleinach. Problemy Inżynierii Rolniczej, 2000, 1/27, 49-56.
 
10.
Fekete A.: Some observations on the contact pressure of tires, Zeszyty Problemowe Postępów Nauk Rolniczych, 1977, 183, 145-157.
 
11.
Raghavan G.S.V., McKyes E., Chassé M.: Soil compaction patterns caused by off-road vehicles in Eastern Canadian agricultural soils. J. of Terramechanics, 1976, 13, 107-115.
 
12.
Ridge R.: Trends in sugar cane mechanization. Int. Sugar J., 2002, 104, 164–166.
 
13.
Soane B.D., Blackwell P.S., Dickson J.W., Painter D.J.: Compaction by agricultural vehicles, A review II, Compaction under tires and other running gear, Soil & Tillage Research, 1, 1980/81, 373-400.
 
14.
Ansorge D., Godwin R.J.: The effect of tyres and a rubber track at high axle loads on soil compaction: Part 1: Single Axle Studies. Biosystems Engineering, 2007, 98 (1), 115–126.
 
15.
Murosky D.L, Hassan A.E.: Impact of tracked and rubbertired skidders traffic on a wetland side in Mississippi. Trans ASAE, 1991, 34(1), 322–7.
 
16.
Raper R.L.: Agricultural traffic impacts on soil. Journal of Terramechanics, 2005, Vol. 42 (3-4), 259-280.
 
17.
Ljungars A.: Olika factorers betydelse för tractorernas jordpackningsverkan. Mätningar Agricultural College Sweden Dep. Soil Sci., 1977, 43.
 
18.
Défosses P., Richard G., Boizard H., O`Sullivan M.F.: Modelling change in soil compaction due to agricultural traffic as function of soil water content. Geoderma, 2003, 116, 89–105.
 
19.
Buliński J., Sergiel J.: Wpływ wilgotności gleby na jej zagęszczenie kołem ciągnika. Inżynieria rolnicza, 2011, 8(133), 45.
 
20.
Medvedev V.V., Cybulko W.G.: Soil criteria for assessing the maximum permissible ground pressure of agricultural vehicles on Chernozem soils. Soil Tillage Res., 1995, 36, 153–164.
 
21.
IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. Food and Agriculture Organization of the United Nations. Rome, 2015, 190.
 
22.
Söhne W.: Druckverteilung im Boden und Bodenverformung unter Schlepperreifen. Grundl. der Landtech., 1953, 5, 49-63.
 
23.
McKyes E.: Soil cutting and tillage. Developments in Agricultural Science. Elsevier, Amsterdam. 1985, Vol. 7, 217.
 
24.
Grecenko A.: Tyre footprint area on hard surface computed from catalogue. J. Terramech., 1995, 32(6), 325-333.
 
25.
Bennie A.T.P.: Growth and mechanical impedance. In: Waisel Y., Eshel A.A., Kafkafi U. (Eds.), Plant Roots, The Hidden Half. Marcel Dekker, New York, 1991, 393–414.
 
26.
Proctor R.: Fundamental principles of soil compaction. Eng. News Rec., 1933, 111, 245-248, 286-289, 348-351.
 
27.
Raghavan G.S.V., Ohu J.O.: Prediction of Static equivalent pressure of Proctor compaction blows. Transaction of the ASAE, 1985, Vol. 28(5), September-October.1398-1400.
 
28.
Botta G.F., Tolon Becerra A., Bellora Tourn F.: Effect of the number of tractor passes on soil rut depth and compaction in two tillage regimes. Soil & Till. Res., 2009, 103, 381–386.
 
29.
Petelkau H., Seidel K.: Bearbeitbarkeit und Befahrbarkeit von Ackerboden in Abhängigkeit von Bodenfeuchte. (Workability and traficability of arable soils as influenced by soil water). Tag-Ber., Akad. Landwirtsch. Wiss. D.D.R. Berlin. 1986, 246. 46-54.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top