ORIGINAL PAPER
The impact of new constructional solutions of pelleting devices on properties of the produced pellets
 
More details
Hide details
1
Uniwersytet Przyrodniczy w Lublinie, Wydział Inżynierii Produkcji, ul. Głęboka 28; 20-612 Lublin, Katedra Eksploatacji Maszyn i Zarządzania Procesami Produkcyjnymi
 
2
Uniwersytet Przyrodniczy w Lublinie, Wydział Inżynierii Produkcji, ul. Głęboka 28; 20-612 Lublin, Katedra Maszyn Ogrodniczych i Leśnych
 
3
Uniwersytet Przyrodniczy w Lublinie, Wydział Inżynierii Produkcji, ul. Głęboka 28; 20-612 Lublin, Katedra Maszynoznawstwa Rolniczego
 
 
Journal of Research and Applications in Agricultural Engineering 2016;61(2):35-39
 
KEYWORDS
ABSTRACT
The paper presents results of study of the pellets made of agricultural biomass. In the tests wheat straw was used and then ground raw materials were concentrated using two types of pelleting machines: with flat matrix and driven by compacting rollers as well as with ring matrix. The research methodology consisted of measurements of physicochemical properties of pellets, i.e. humidity after compaction, bulk density, and mechanical stability factor. Calorific value, ash content, and chemical composition of the raw material were also specified. Average humidity of the raw material ranged from 10.30% for ring press to 10.77% for flat press. The pelleting process changed the water content in a final product causing statistically significant differences between pelleting devices applied. The bulk density of pellets in both machines did not differ considerably and amounted to 541.77 kg·m-3 for ring press and to 544.21 kg·m-3 for flat press. Calorific value of the produced pellet in both cases was above 15 MJ·kg-1. Applying new constructional solutions in a form of two pelleting device types, allowed for obtaining product that was characterized by high mechanical durability greater than 95%.
REFERENCES (27)
1.
Bakisgan C., Dumanli A.G., Yuda Yürüm Y.: Trace elements in Turkish biomass fuels: Ashes of wheat straw, olive bagasse and hazelnut shell. Fuel, 2009, 88, 1842-1851.
 
2.
Bergman P.C.A., Boersma A.R., Zwart R.W.R., Kiel J.H.A.: Torrefied biomass for entrained-flow gasification of biomass. Report ECN-C-05-026, ECN, Petten, 2005.
 
3.
Campbell K.: A feasibility study guide for an agricultural biomass pellet company. S.A. November. Campbell Consulting LLC, St. Paul, Minnesota, 2007. http://www.canadiancleanpower coalition.com/files/6212/8330/1259/BM12%20-%20200711%20Feasibility%20Pelleting.pdf (accessed 6.03.2015).
 
4.
Carroll J., Finnan J.: Physical and chemical properties of pellets from energy crops and cereal straws. Biosystems Engineering, 2012, 112, 151-159.
 
5.
Channiwala S.A., Parikh P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 2002, 81, 1051-1063.
 
6.
Colley Z., Fasina O.O., Bransby D., Lee Y.Y.: Moisture effect on the physical characteristics of switchgrass pellets. T. ASAE, 2006, 49, 1845-1851.
 
7.
Denisiuk W.: Techniczne i ekologiczne aspekty wykorzystania słomy na cele grzewcze. Rozprawa doktorska. Maszynopis. Olsztyn, Uniwersytet Warmińsko-Mazurski, 2003.
 
8.
Fasina O.O., Sokhansanj S.: Storage and handling characteristics of alfalfa pellets. Powder Handl. Process, 1996, 8, 361-365.
 
9.
Fasina O.O.: Physical properties of peanut hull pellets. Bioresource Technol., 2008, 99, 1259-1266.
 
10.
Friedl A., Padouvas E., Rotter H., Varmuza K.: Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta, 2005, 544, 191-198.
 
11.
Jenkins B.M., Baxter L.L., Miles Jr., T.R., Miles T.R.: Combustion properties of biomass. Fuel Processing Technology, 1998, 54, 17-46.
 
12.
Kachel-Jakubowska M., Kraszkiewicz A.: Zrównoważony rozwój rynku biomasy. [w:] Szpryngiel M. (red.): Zrównoważone wykorzystanie surowców roślinnych i przemysłowych do produkcji peletów. Lublin, 2014, 35-50.
 
13.
Kaliyan N., Morey R.V., White M.D., Doering A.: Roll-press briquetting and pelleting of corn stover and switchgrass. T. ASAE, 2009, 52, 543-555.
 
14.
Kaliyan N., Morey R.V.: Factors affecting strength and durability of densified biomass products. Biomass Bioenerg., 2009, 33, 337-359.
 
15.
Kraszkiewicz A., Kachel-Jakubowska M., Szpryngiel M., Niedziółka I.: Influence of the chemical properties of the plant biomass of agricultural origin on energy intensity of its compaction. [w:] Lorencowicz E. (Eds.), Uziak J. (Eds.), Hyughebaert B. (Eds.): Farm machinery and processes management in sustainable agriculture. VI International Scientific Symposium, Lublin, 2013, 129-132.
 
16.
Larsson, S.H., Thyrel, M., Geladi, P., Lestander, T.A.: Highquality biofuel pellet production from pre-compacted, lowdensity raw materials. Bioresource Technol., 2008, 99, 71767182.
 
17.
Lorencowicz E., Kraszkiewicz A., Kachel-Jakubowska M.: Organizacja i koszty przetwarzania biomasy rolniczej na pelety. Stowarzyszenie Ekonomistów Rolnictwa i Agrobiznesu. Roczniki Naukowe, 2015, XVII, 2, 1-6.
 
18.
Mani S., Sokhansanj S., Turhollow X., Bi A.: Economics of producing fuel pellets from biomass. Biosystems engineering, 2006, 22(3), 421-426.
 
19.
Mani S., Tabil L.G., Sokhansanj S.: An overview of compaction of biomass grinds. Powder Handl. Process., 2003, 15, 160-168.
 
20.
Niedziółka I., Szpryngiel M.: Ocena cech jakościowych peletów wytworzonych z biomasy roślinnej. Inżynieria Rolnicza, 2012, 2(136), T.1, 267-276.
 
21.
Niedziółka I., Zuchniarz A.: Analiza energetyczna wybranych rodzajów biomasy pochodzenia roślinnego. MOTROL, 2006, 8A, 232-237.
 
22.
Rybak W.: Spalanie i współspalanie biopaliw stałych. Wyd. Politechniki Wrocławskiej, 2006.
 
23.
Skonecki S., Potręć M., Laskowski J.: Właściwości fizyczne i chemiczne odpadów rolniczych. Acta Agrophysica, 2011, 18(2), 443-455.
 
24.
Tabil L., Sokhansanj S.: Process conditions affecting the physical quality of alfalfa pellets. Appl. Eng. Agric., 1996, 12(3), 345-350.
 
25.
Theerarattananoon K., Xua F., Wilson J., Ballard R., Mckinney L., Staggenborg S., Vadlani P., Pei Z.J., Wang D.: Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Industrial Crops and Products, 2011, 33, 325-332.
 
26.
Vassilev S., Baxter D., Andersen L., Vassileva C.: An overview of the chemical composition of biomass. Fuel, 2010, 89, 913-933.
 
27.
Xiao R.R., Chen X.L., Wang F.C., Yu G.: The physicochemical properties of different biomass ashes at different ashing temperature. Renew. Energy, 2011, 36, 244-249.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top