ORIGINAL PAPER
The importance of structural and practical unidentifiability in modeling and testing of agricultural machinery. Identifiability testing of aggregate model parameters tractor baler-wrapper
 
More details
Hide details
1
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
 
2
Metal-Fach Sp. z o.o
 
 
Journal of Research and Applications in Agricultural Engineering 2021;66(1):4-9
 
KEYWORDS
ABSTRACT
New methods of parametric identification are presented in particular tests of identifiability and non-identifiability of model parameters. A definition of the concept of identifiability of model parameters is presented. Methods for testing identifiability using Laplace transform using similarity transformation and using symbolic calculations are described. Available software for testing model identifiability is presented. These are programs for symbolic calculations (MAPLE MATHEMATICA) operating in the form of web applications and in the form of tools for the Matlab environment. The method of introducing the model to the computational environment in the form ordinary differential equations (ODE) is presented. Examples of calculations identifiability of parameters of the complex model of the tractor-single-axle agricultural machine e.g. a baler-wrapper are included.
REFERENCES (16)
1.
Bellman R., Åström K.J.: On structural identifiability. Mathe-matical biosciences, 1970, 7(3-4), 329-339.
 
2.
Chiş O., Banga J.R., Balsa-Canto E.: GenSSI: a software toolbox for structural identifiability analysis of biological mod-els. Bioinformatics, 2011, 27(18), 2610-2611.
 
3.
Chis O.T., Banga J.R., Balsa-Canto E.: Structural identifiabil-ity of systems biology models: a critical comparison of meth-ods. PloS one, 2011, 6(11), e27755.
 
4.
Karkee M.: Modeling identification and analysis of tractor and single axle towed implement system. Iowa State University, 2009.
 
5.
Karkee M., Steward B.L.: Study of the open and closed loop characteristics of a tractor and a single axle towed implement system. Journal of Terramechanics, 2010, 47(6), 379-393.
 
6.
Karkee M., Steward B.L.: Parameter estimation and validation of a tractor and single axle towed implement dynamic system model. Computers and electronics in agriculture, 2011, 77(2), 135-146.
 
7.
Ljung L., Glad T.: On global identifiability for arbitrary model parametrizations. Automatica, 1994, 30, 265-276.
 
8.
Meshkat N., Eisenberg M., DiStefano J.J.: An algorithm for finding globally identifiable parameter combinations of nonlin-ear ODE models using Gröbner Bases. Mathematical bioscien-ces, 2009, 222(2), 61-72.
 
9.
Meshkat N., Kuo C.E.Z., DiStefano J.III: On finding and us-ing identifiable parameter combinations in nonlinear dynamic systems biology models and COMBOS: a novel web imple-mentation. PLoS One, 2014, 9(10).
 
10.
Miao H., Xia X., Perelson A.S., Wu H.: On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM review, 2011, 53(1), 3-39.
 
11.
Nielsen S.L.: Identifiability analysis of a tractor and single axle towed implement model. Iowa State University, 2011.
 
12.
Paré P.E.: Necessary and Sufficient Conditions for State-Space Network Realization. Doctoral dissertation Brigham Young University, 2014.
 
13.
Szczepaniak J., Tanas W., Pawlowski T., Kromulski J.: Mod-elling of agricultural combination driver behaviour from the aspect of safety of movement. Annals of agricultural and envi-ronmental medicine, 2014, 21(2).
 
14.
Vajda S., Godfrey K.R., Rabitz H.: Similarity Transformation Approach to Identifiability Analysis of Nonlinear Compart-mental Models. Mathematical Biosciences, 1989, 93, 217-248.
 
15.
Villaverde A.F., Barreiro A., Papachristodoulou A.: Structural identifiability of dynamic systems biology models. PLoS com-putational biology, 2016, 12(10), e1005153.
 
16.
Villaverde A.F., Barreiro A., Papachristodoulou A.: STRIKE-GOLDD USER MANUAL STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition, 2016.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top