ORIGINAL PAPER
The influence of pressing conditions and cooling dynamics of rapeseed oil as biofuel on its oxidative stability
,
 
,
 
,
 
 
 
More details
Hide details
1
Instytut Technologiczno-Przyrodniczy, Oddział w Poznaniu, Zakład Odnawialnych Źródeł Energii, ul. Biskupińska 67, 60-463 Poznań, Poland
 
2
Przemysłowy Instytut Maszyn Rolniczych, ul. Starołęcka 31, 61-369 Poznań, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2016;61(2):55-59
 
KEYWORDS
ABSTRACT
Organic products undergo biodegradation processes in favourable conditions while being improperly stored. The production of vegetable oils by means of the pressing technology requires high electrical energy input which is converted by friction forces in screw extrusion presses into heat. The heat, in turn, is conducive to the organic mass degradation processes. The purpose of the study was to determine the impact of the pressing temperature and the dynamic oil cooling processes on the oxidative stability. The tests were carried out in the industrial environment in a production room of an oil and fat plant producing rapeseed oil. Based on the summarised test results, it can be concluded that the initial oil temperature and the cooling rate had a significant impact on the variable value. The higher the values of these parameters were, the longer the oxidative stability period was. The oxidative stability was more than 60 h for the hot-pressed oil and about 10 h for the cold-pressed oil. The oil free from solid impurities showed resistance at a level of 18 h.
REFERENCES (23)
1.
Altin R., Cetinkaya S., Yucesu H.S.: The potential of using vegetable oil fuel for diesel engines. Energy Conversion and Management, 2001, 42, 529-538.
 
2.
Atabani A.E., Silitonga A.S., Badruddin I.A., Mahlia T.M.I., Masjuki H.H., Mekhilef S.: A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 2012, 16, 20702093.
 
3.
Bajer J., Janecki J.: Zmiany chemiczne w utlenianym oleju rzepakowym. Problemy Eksploatacji, 2002, 3, 191-202.
 
4.
Baquero G., Esteban B., Riba J.R., Puig R., Rius A.: Use of rapeseed straight vegetable oil as fuel produced in small-scale exploitations. In: Biofuel’s Engineering Process Technology. Ed. Marco Aurelio Dos Santes Bernardes. InTech. Croatia, 2011, 86-102. ISBN 978-953-307-480-1.
 
5.
Blin J., Brunschwig C., Chapuis A., Changotade O., Sidibe S., Noumi E., Girard P.: Characteristics of vegetable oils for use as fuel in stationary diesel engines - towards specifications for a standard in west Africa. Renewable and Sustainable Energy Reviews, 2013, 22, 580-597.
 
6.
Choe E., Min D.B.: Mechanisms and Factors for Edible Oil Oxidation. Comprehensive Reviews in Food Science and Food Safety, 2006, 5, 4, 169-186.
 
7.
DIN 51 605:2010-10 Rapeseed oil as fuel. ASG info letter. No 3.
 
8.
Dunn R.O.: Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Processing Technology, 2005, 86, 1071-1085.
 
9.
Elsbett G., Bialkowsky M.: Presentation for Shanghai International symposium on I. C. Engine, 2003, 18 pp.
 
10.
EN-PN 14214:2004 Paliwa do pojazdów samochodowych - Estry metylowe kwasów tłuszczowych (FAME) do silników o zapłonie samoczynnym (Diesla) - Wymagania i metody badań.
 
11.
Golimowski W., Pasyniuk P., Berger W.A.: Common rail diesel tractor engine performance running on pure plant oil. Fuel, 2013, 103, 227-231.
 
12.
Górecka A., Wroniak M., Krygier K.: Wpływ ogrzewania nasion na jakość wytłoczonego oleju. Rośliny oleiste, 2003, T. XXIV, 567-576.
 
13.
Gromadzka J., Wardencki W.: Trends in edible vegetable oils analysis. Part A. determination of different Components of edible oils - a review. Polish Journal of Food and Nutrition Sciences, 2011, 61, 1, 33-43.
 
14.
Isbell T.A., Abbott T.P., Carlson K.D.: Oxidative stability index of vegetable oils in binary mixtures with meadowfoam oil. Industrial Crops and products, 1999, 9, 115-123.
 
15.
Krygier K, Płatek T.: Comparison of pressed and extracted rapeseed oils characteristics. Proceedings of the 10th International Rapeseed Congress. Canberra, Australia, 1999.
 
16.
Larson R.A., Marley K.A.: Optimized Antioxidants for Biodiesel. Illinois Sustainable Technology Center. ITSC’s Technical Report Series, 2011, TR-046, 22 pp.
 
17.
Radziemska E., Lewandowski W., Szukalska E., Tynek M., Pustelnik A.,Ciunel K.: Chemia Dydaktyka Ekologia Metrologia, 2009, 14, 1-2, 79-84.
 
18.
Remmele E., Thuneke K.: Pre-standard DIN V 51605 for Rapeseed Oil Fuel. 15th European Biomass Conference & Exhibition. 7-11 May 2007, Berlin, 2612-2613.
 
19.
Russo D., Dassisti M., Lawlor V., Olabi A.G.: State of the art of biofuels from pure plant oil. Renewable and Sustainable Energy Reviews, 2012, 16, 4056-4070.
 
20.
Svetlik M.: Quality evaluation of rapeseed oil used as engine fules. Acta Universitatis Agriculture et Silviculturae Mendelianae Brunensis, 2012, LX, 1, 125-136.
 
21.
Wroniak M., Łukasik D.: Ocena stabilności oksydatywnej wybranych olejów [10] spożywczych tłoczonych na zimno. Rośliny Oleiste, 2007, XXVIII, 303-317.
 
22.
Zadernowski R., Nowak-Polakowska H., Pieńkowska H., Czaplicki S.: Wpływ sposobu wydobywania tłuszczu z nasion wiesiołka i ogórecznika na wybrane cechy fizykochemiczne oraz stabilność olejów. Rośliny Oleiste, 2002, XXVIII, 471-480.
 
23.
Zuleta E.C., Baena L., Rios L.A., Calderon J.A.: The oxidative stability of biodiesel and its impact on the deterioration of metallic and polymeric materials. Journal of the Brazilian Chemical Society, 2012, 23, 12, 21 pp.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top