ORIGINAL PAPER
The process of deposit formation on piezoelectric injector of common rail fuel injection system
More details
Hide details
1
AGH University of Science and Technology, Krakow, Faculty of Energy and Fuels, Department of Fuels Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
2
Agricultural University of Cracow, Faculty of Production Engineering and Energetic, Department of Mechanical Engineering and Agrophysics, ul. Balicka 116B, 30-149 Kraków, Poland
3
Oil and Gas Institute - National Research Institute, Krakow; ul. Lubicz 25A, 31-503 Kraków, Poland
Journal of Research and Applications in Agricultural Engineering 2017;62(1):48-54
KEYWORDS
ABSTRACT
The complexity of the deposit formation process on the components of compression ignition engine, including high-pressure injection Common Rail systems, is gaining global significance. Knowledge related to the mechanisms of their formation and chemical composition is still insufficient and requires further studies. The studies allowed, hypothetically, assuming several mechanisms of their formation, but each of them requires further research in order to be verified and finally confirmed. This is due to high complexity of the factors and conditions that may affect the initiation of the deposit formation, of which the most important are: fuel and additive composition and type of contaminants from fuel production and transport. Deposit physical nature may vary, as it may be soaps, salts of metals or ashless materials like imide or amide of organic polymers. This article contains the results of the research on the assessment of Common Rail injector components contamination and their technical condition, after 80 thousand km operational run, with the use of diesel and biofuel B10.
REFERENCES (13)
1.
CEN/TC 19 WG24. Report of the AD-hoc Injector Sticking Task Force - 2. August 2011.
2.
Chapman L.: Diesel Soap - Formation and Related Problems. National Tanks Conference. Boston, September 21, 2010.
3.
Cieślikowski B.: Spectral analysis of deposits from a catalytic con-verter of Diesel engine. Combustion Engines, 2011, 3(146) 1-6.
4.
Hiroyasu H., Arai M.: Structures of Fuel Sprays in Diesel Engines. SAE Paper 900475, 1990. DOI: 10.4271/900475.
5.
Jakóbiec J., Baranik M., Duda A.: Wysoka jakość estrów metylowych kwasów tłuszczowych oleju rzepakowego to promocja transportu samochodowego. Archiwum Motoryzacji, 2008, 1, 3-18.
6.
Jakóbiec J., Wysopal G.: Nowe podejście w zakresie oceny zanieczyszczenia układu dolotowego i komór spalania silnika samochodowego. Międzynarodowa Konferencja KONMOT-AUTO PROGRES`2000, Zakopane, 2000, 47-57.
7.
Mazanek A., Jakóbiec J.: Ocena jakości paliw silnikowych w badaniach eksploatacyjnych. Nafta - Gaz, 2009, 1, 75-92.
8.
Merker G.P., Schwarz Ch., Teichmann R.: Combustion Engines Development: Mixture Formation. Combustion, Emissions and Simulation; Springer, 2012.
9.
Novel-Cattin F., Rincon F., Trohel O.: Evaluation Method for Diesel Particulate Trap Regeneration Addititives: Application to Fire Additives. SAE Paper 2000, 01-1914. DOI:10.4271/2000-01-1914.
10.
Quigley R., Barbour R., Fahey E., Arters D., Wetzel W., Ray J.: A Study of the Internal Diesel Injector Deposit Phenomenon. TAE, Fuels 7th Annual Colloquim, January 2009.
11.
Stanik W., Jakóbiec J.: Proekologiczny rozwój technologii silników o zapłonie samoczynnym. Autobusy - Technika -Eksploatacja - Systemy Transportowe, 2013, 78, 187-192.
12.
Stępień Z.: Przyczyny i skutki tworzenia wewnętrznych osadów we wtryskiwaczach silnikowych układów wysokociśnieniowego wtrysku paliwa. Nafta - Gaz, 2013, 3, 256-262.
13.
Worldwide Fuel Charter, Fourth Edition, September 2006.