ORIGINAL PAPER
Two approaches to representing agri-food product geometry - an original software for constructing finite element models and the 3ds Max approach
More details
Hide details
1
Poznan University of Life Sciences, Faculty of Agriculture and Bioengineering, Institute of Biosystems Engineering, Department of Applied Informatics, ul. Wojska Polskiego 28, 60-637 Poznan, Poland
Journal of Research and Applications in Agricultural Engineering 2014;59(1):155-158
KEYWORDS
ABSTRACT
Adequate representation of agri-food product properties in mathematical models of heat and water transport is necessary to
simulate the behavior of the products, and to be able to explain and predict agri-food processing operations such as drying,
cooling, and heating. Heat and water transport processes affect the final product quality and it is important to provide designers
of agri-food processing and storing systems with tools for virtual prototyping and performance prediction. A lack of
sufficient knowledge on product complex geometry represents a major obstacle_in many computer predictions. Therefore
two original approaches, one based on the finite element mesh generation and the other on the 3ds Max modeling were constructed
and implemented in the paper to represent geometry of agri-food products. The approaches were used to model
corn kernel geometry, in the intention of modeling grain drying and storing processes.
REFERENCES (16)
1.
Białobrzewski I., Zielińska M., Mujumdar A.S., Markowski M.: Heat and mass transfer during drying of a bed of shrinking particles – simulation for carrot cubes dried in a spoutfluidized-bed drier. International Journal of Heat and Mass Transfer, 2008, 51, 4704-4716.
2.
Frączek J.: Wykorzystanie elementów komputerowej analizy obrazu w modelowaniu kształtunasion (Application of elements of computer image analysis to modeling seed shapes). Inżynieria Rolnicza, 2003, 11(53), 65-70.
3.
Frączek J., Wróbel M.: Zastosowanie grafiki komputerowej w rekonstrukcji 3D nasion (Using computer graphics for 3D reconstruction of seeds). Inżynieria Rolnicza, 2009, 6(115), 87-94.
4.
Frey P., George P.L.: Mesh Generation, 2nd ed., Wiley-ISTE, Hoboken, NJ, USA, 2008.
5.
Gomaa H.: Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures, Cambridge University Press, Cambridge, UK, 2011.
6.
Gonzalez R. C., Woods R.E.: Digital Image Processing, 3rd ed., Pearson Prentice Hall, Upper Saddle River, NJ, USA, 2008.
7.
Mooney T.: 3ds Max Speed Modeling for 3D Artists, Packt Publishing, Birmingham, UK, 2012.
8.
Murdock K.L.: 3ds Max 2012 Bible, John Wiley & Sons, Indianapolis, IN, 2011.
9.
Nagel C., Evjen B., Glynn J., Watson K., Skinner M.: Professional C# 2012 and .NET 4.5, Wrox (Wiley), Hoboken, NJ, USA, 2012.
10.
Shih F.Y.: Image Processing and Pattern Recognition: Fundamentals and Techniques, Wiley-IEEE Press Hoboken, NJ, USA, 2010.
11.
Sommerville I.: Software Engineering, 9th ed., Addison Wesley, Upper Saddle River, NJ, USA, 2010.
12.
Takhar P.S., Zhang S.: Drying of corn kernels: from experimental images to multiscale multi-physics modeling. Proc. Of the COMSOL Conf., Boston, 2009, CD Edition, 5 p.
13.
Weres J., Jayas D.S.: Effects of corn kernel properties on predictions of moisture transport in the thin-layer drying of corn. Transactions of the ASAE, 1994, 37(5), 1695-1705.
14.
Weres J., Olek W., Kujawa S.: Comparison of optimization algorithms for inverse FEA of heat and mass transport in biomaterials. Journal of Theoretical and Applied Mechanics, 2009, 47(3), 701-716.
15.
Weres J.: Informatyczny system pozyskiwania danych o geometrii produktów rolniczych na przykładzie ziarniaka kukurydzy (Information system for acquiring data on geometry of agricultural products exemplified by a corn kernel). Inżynieria Rolnicza, 2010, 7(125), 229-236.
16.
Zienkiewicz O.C., Taylor R.L., Zhu J.Z.: The finite element method: its basis and fundamentals, 7th ed., Elsevier: Butterworth-Heinemann, Oxford, UK, 2013.