ORIGINAL PAPER
Use of methods of image processing and analysis to determine the distribution class of cortical granules in bovine oocytes
,
 
,
 
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
Poznan University of Life Sciences, Institute of Biosystems Engineering, Poznan, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2015;60(1):14-18
 
KEYWORDS
ABSTRACT
Image processing and analysis are one of the tools to achieve data coded in digital images. Development of these methods enables to gain more data coded in digital images, even those which are not visible to the human eyes. Therefore it is justified to create new computer systems appointed in functions and filters that support process of gaining new information coded in digital image. In this study system for classification of oocytes has been described. The cells are classified taking into account distribution of cortical granulae according to three-class scale. In addition, knowing the diameter of the follicle from which the oocyte was aspired and class of oocyte-cumulus complex, it is possible to determine developmental competence of oocyte.
REFERENCES (12)
1.
Tadeusiewicz R., Kohorda P.: Komupterowa analiza i przetwarzanie obrazów. Kraków, 1997.
 
2.
Malina W., Smiatacz M.: Metody cyfrowego przetwarzania obrazów. Warszawa: Akademicka Oficyna Wydawnicza EXIT, 2005.
 
3.
Adamczak R.: Zastosowanie sieci neuronowych do klasyfikacji danych doświadczalnych. Kraków, 2001.
 
4.
Belton P., Kemsley E., McCann M., Ttofis S., Wilson R., Delgadillo I.: The identification of vegetable matter using Fourier Transform Infrared Spectroscopy, Food Chemistry, 1995, Vol. 54, No. 4: 437-441.
 
5.
Boniecki P., Zaborowicz M., Przybył K., Pilarski K.: System informatyczny PiAO2 jako narzędzie wspomagające bezwzorcową klasyfikację pomidorów. Journal of Research and Applications in Agricultural Engineering, 2012, Vol. 57 (1): 26-28.
 
6.
Gomes J., Leta F.: Applications of computer vision techniques in the agriculture and food industry. Eur. Food Res. Technol., 2012, 235: 989-1000.
 
7.
Grudziński J., Panasiewicz M.: Wspomaganie doradztwa rolniczego przy wykorzystaniu technologii informatycznych -perspektywy i ograniczenia. Inżynieria Rolnicza, 2000, Nr 7(18):54-59.
 
9.
Payton R. R., Romar R., Coy P., Saxton A.M., Lawrence J.L, Edwards J.L.: Susceptibility of bovine germinal vesicle-stage oocytes from antral Follicles to direct effects of heat stress in vitro. Biology of Reproduction, 2004, 71, 1303-1308.
 
10.
Stojkovic M., Machado S.A, Stojkovic P., Zakhartchenko V., Hutzler P., Goncaves P.B., Wolf E.: Mitochondrial distribution and adonesine triphosphate content of bovine oocytes before and after in vitro maturation: Correlation and morphological criteria and development al capacity after in vitro ferlilization and culture. Biology of Reproduction 64, 904-909, 2001.
 
12.
Wróbel Z., Koprowski R.: Praktyka przetwarzania obrazów z zadaniami w programie Matlab. Warszawa, 2008.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top