ORIGINAL PAPER
Use of neuron image analysis to build classification model of corpora lutea of domestic cattle
,
 
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
Uniwersytet Przyrodniczy w Poznaniu, Wydział Rolnictwa i Bioinżynierii, Instytut Inżynierii Biosystemów, ul. Wojska Polskiego 27, 60-637 Poznań, Poland
 
 
Journal of Research and Applications in Agricultural Engineering 2016;61(3):162-166
 
KEYWORDS
ABSTRACT
The paper presents the results of studies on the usefulness of the texture images USG (ultrasonography) analysis by GLCM (Gray Level Co-Occurrence Matrix) in neural modeling. Tests pertained to the efficacy of the classification of the corpora lutea located in ultrasound images of the domestic cattle ovaries performed by artificial neural networks. The tests were performed using three different methods: the first one used unprocessed images - raw, the second method used image processing - unsharp mask. In the third method the raw images were processed by filter reducing the noise - despeckle filter. For each of the presented methods, the best generated neural network model had the structure of the MLP (Multi Layers Perceptron). The best results, in terms of artificial neural network were obtained in the case of ultrasound images that were not processed prior to texture analysis. As a result, it generated MLP neural model of structure 5:5-8-1:1.
REFERENCES (16)
1.
Boniecki P., Koszela K., Piekarska-Boniecka H, Weres J., Zaborowicz M., Kujawa S., Majewski A., Raba B.: Neural identification of selected apple pests. Computers and Electronics in Agriculture, 2015, 110, 9-16.
 
2.
Checura C.M., Carnevale E.M., Coutinho da Silva M.A., Adams G.P., Pierson R.A.: Early luteogenesis: computerassisted image analysis of the corpus luteum in the first 24 h postovulation. Theriogenology, 2002, 58, 533-535.
 
3.
Choi H.H., Lee J.H., Kim S.M., Park S.Y.: Speckle noise reduction in ultrasound images using a discreet wavelet transform-based image fusion technique. Bio-Medical Materials and Engineering, 2015, 26. DOI: 10.3233/BME-151458.
 
4.
Duggavathi R., Bartlewski P.M., Pierson R.A., Rawlings N.C.: Luteogenesis in Cyclic Ewes: Echotextural, Histological, and Functional Correlates. Biology of reproduction, 2003, 69, 634-639. DOI: 10.1095/biolreprod.103.016576.
 
5.
ImageJ - Technical Documentation retrieved from [http://imagej.nih.gov/ij/docs/], date: 01.06.2016.
 
6.
Kot K., Ginther O.J.: Ultrasonic characterization of ovulatory follicular evacuation and luteal development in heifers. J. Reprod. Fertil., 1999, 115, 39-43.
 
7.
Liu X., Dai Q., Hart E.J., Barrett D.M., Rawlings N.C., Pierson R.A., Bartlewski P.M.: Ultrasonographic characteristics of ovulatory follicles and associated endocrine changes in cyclic ewes treated with medroxyprogesterone acetate (MAP)releasing intravaginal sponges and equine chorionic gonadotropin (eCG). Reprod. Domest. Anim., 2007, 42, 393-401. [PubMed: 17635777].
 
8.
Pawlak J.: Ekologiczne mięso. Wiedza i jakość, 2008, 2 (11).
 
9.
Przybylak A., Boniecki P., Zaborowicz M., Mo Z., Przybył K.: Przykłady wykorzystania modelowania neuronowego w praktyce rolniczej. Technika Rolnicza Ogrodnicza Leśna, 2013, 1.
 
10.
Rekawicki R, Kowalik M.K., Slonika D., Kotwica J.: Regulation of progesterone synthesis and action in bovine corpus luteum. Journal of Phisiology and Pharmacology, 2008. 59, Suppl 9, 75-89.
 
11.
Singh J., Pierson R.A., Adams G.P.: Ultrasound image attributes of the bovine corpus luteum: structural and functional correlates. J. Reprod. Fertil., 1997, 109(1), 35-44.
 
12.
Thakur A., Anand R.S.: Image quality based comparative evaluation of wavelet filters in ultrasound speckle reduction. Digital Signal Processing, 2005, 15, 455-465.
 
13.
Vassena R., Adams G.P., Mapletoft R.J., Pierson R.A., Singh J.: Ultrasound image characteristics of ovarian follicles in relation to oocyte competence and follicular status in cattle. Animal Reproduction Science, 2003, 76, 25-41.
 
14.
Zaborowicz M., Przybył. J., Koszela K., Boniecki P., Mueller W., Raba B., Lewicki A., Przybył K.: Computer image analysis in obtaining characteristics of images greenhouse tomatoes in the process of generating learning sets of artificial neural networks. Proc SPIE. 9159, Sixth International Conference on Digital Image Processing (ICDIP 2014), 91590D. (April 16, 2014). ISSN: 0277-786X. DOI:10.1117/12.2064066.
 
15.
Zaborowicz M., Włodarek J., Przybył K., Wojcieszak D., Czekała W., Ludwiczak A., Przybylak A., Boniecki P., Koszela K., Przybył J., Skwarcz J.: Image Acquisitions, Processing and Analysis in the Process of Obtaining Characteristics of Horse Navicular Bone. Proc. SPIE. 9631, Seventh International Conference on Digital Image Processing (ICDIP 2015), 963111. (July 06, 2015). DOI: 10.1117/12.2196922.
 
16.
Zbylut J., Jaskowski J.M., Influence of elimination of morphologically dominant follicles on the effectiveness of superovulation in heifers. Bulletin of the Veterinary Institute in Puławy, 2001, 45, 2, 267-273.
 
eISSN:2719-423X
ISSN:1642-686X
Journals System - logo
Scroll to top