ORIGINAL PAPER
The use of artificial neuronal networks of the RBF type for prediction of yield of chosen cereal plants
More details
Hide details
Journal of Research and Applications in Agricultural Engineering 2005;50(2):15-19
KEYWORDS
ABSTRACT
Appearing recently methods, having guilds of artificial intelligence, permit on building of simulating models which realize assigned tasks on the basis of patterns taken directly with nature observation [1]. The processing techniques based on artificial neural networks create a special group, being in fact a computer simulators of brain work [3]. With the help of neuronal models it is possible to predict the expected crops yield on the basis of empirical data regarding crop yields in last summers. This work proposes utilization of prediction methods, which represent chosen topologies of neuronal nets among others, the RBF (Radial Basis Functions) neural network peculiarly.
REFERENCES (5)
1.
Rutkowska D., Piliński M., Rutkowski L. (1997). Sieci neuronowe, algorytmy genetyczne i systemy rozmyte: Wydawnictwo Naukowe PWN, Warszawa-Łódź.
2.
Osowski S. (2000). Sieci neuronowe do przetwarzania informacji: Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
3.
Hertz J., Krogh A., Palmer R. G. (1993). Wstęp do teorii obliczeń neuronowych: WNT, Warszwa.
4.
Boniecki P. (2004). Sieci neuronowe typu MLP oraz RGB jako komplementarne modele aproksymacyjne w procesie predykcji plonu pszenżyta: Journal of Research and Applications in Agricultural Engineering, Poznań, (1’2004), Vol. 49(1), str. 28-33.
5.
Boniecki P., Weres J. (2003). Wykorzystanie technik neuronowych do predykcji wielkości zbiorów wybranych płodów rolnych: Journal of Research and Applications in Agricultural Engineering, 4’2003, Vol. 48, str. 56-59.