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NEURAL NETWORK DEVELOPMENT FOR AUTOMATIC IDENTIFICATION OF THE
ENDPOINT OF DRYING BARLEY IN BULK

Summary

A thesis was proved that it is possible an autoerextidpoint determination of drying barley in bulk? meter’s deep, based
on a neural network, using a continuous on-line saeament of atmospheric air temperature and retatiumidity, plenum
air temperature and grain temperature in selectechtions inside the bed - in situations in whiclyidg air temperature
and relative humidity change stochastically. Thefukiess of individual input variables charactangithe process as well
as their influence on the quality of the obtaineadei were analysed. Several different topologiethefdeveloped models
were compared and the RBF type networks were selexg the best ones. The developed networks araatbased by
a high, ranging from 93.3 to 99.6%, correctnessase assignment to the recognised classes in tmseof the identifica-
tion process and a high capability to generalise #&malysed data.

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWCYH DO AUTOMATYCZNEJ
IDENTYFIKACJI ZAKONCZENIA NISKOTEMPERATUROWEGO SUSZENIA
JECZMIENIA

Streszczenie

W pracy potwierdzono nalbwvos¢ automatycznej identyfikacji zakezenia procesu niskotemperaturowego suszenia ziarna
jeczmienia w nieruchomej warstwie o grdbiol,2 m z zastosowaniem sztucznej sieci neurondNesipujgce wielkdci

byly mierzone w sposébqgty ,on-line”: temperatura i wilgotng¢ wzgkdna powietrza atmosferycznego, temperatura
Sprezonego powietrza oraz temperatura nasion w wybranmy@jscach wewytrz komory — w sytuacji, w ktérej temperatu-
ra powietrza suszego i wilgotné¢ wzgkdna zmienialy gi stochastycznie. Przeanalizowano przydétrmoszczegolnych
zmiennych weégiowych charakteryzugych proces jak réwnidch wpltyw na jaké’ otrzymanego modelu. Poréwnano row-
niez rézne topologie otrzymanych sieci. Jako najlepsze poytano sieci typu RBF. Znalezione sieci charaktemgaty se

duzq (w granicach 93,3-99,6%), poprawfod; przypisywania przypadkoéw do rozpoznawanych klag arysokiej zdolno-

sci do generalizacji analizowanych danych

1. Introduction

modelling to investigate changes of the temperdiate of
wheat stored in a grain silo. The RBF-type netwaks

Based on some selected brain properties and empgloy used to calculate the convective heat-transfer ficteit

only the most important principles of its activitjertificial

neural networks (ANN) make it possible to solve ywer

complex problems [4]. Their significant advantagethe
ability to learn and generalise the acquired kndge
which they draw from databases provided by the. Useu-
ral networks are characterised by inductive infeeeri.e.
they do not explain causes of the examined phenaraed,
therefore, are employed widely in the situationsemwthe
user is in a position to identify the target andegan exam-
ple how to reach it, although he/she need not lite gure
with regard to the correlations between the inpotdr and
the obtained results [7].

Neural networks are used successfully all ovemtbed
to control and model a wide range of different peses
connected with food production which are charaséstiby
complexity, nonlinearity and a large quantity otalalrhey
are employed, among others, in the modelling ofusibn
processes, prediction of the freezing time of fpodducts
of different sizes or to control fermentation temation [3].
Neural networks are also utilised during the dryafgari-
ous agricultural articles. Using ANN, Bakhshianiat [1]
modelled the drying kinetics of tomato slices takimto
consideration the temperature and drying time dkasehe
thickness of slices. Biatobrzeski et al. [2] emm@dyneural
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into the silo walls.

Drying of grain in bulk involves forced ventilatipby a
fan, of a deep stationary bed of grain. The methidizes
the drying potential of the atmospheric air andtbatilat-
ing air is heated only in exceptional conditionsewtthe
drying potential is lacking, but even then the iaiheated
up only by a few degrees Celsius [5]. The heat mads
transfer in this process is not smooth, but is ected to
substantial disturbances from random fluctuatiomsthie
ambient air temperature and humidity [9]. This ishably
the reason why control devices used to supervigagice-
reals in bulk are not capable to identify the dgyendpoint
[11]. Such identification can be done manually gse
grain moisture content tester. Manual supervisibdrging
progress, apart from being costly, depends on pleeadors’
skill which may result in a decrease of grain dyaliro
solve this problem, Ryniecki et al. [8] developed auto-
matic determination of near-ambient barley dryingtatic
deep beds, based on a correlation to calculaten gnais-
ture content of the top layer, using a continuoudime
measurement of relative humidity (RH) and tempeeabf
outlet air.

One objective of the described investigations teade-
velop a method of identification drying endpoint ighh
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could eliminate necessity of the difficult measuesinof
air RH inside a dryer. The authors intend to vewtyether

it is possible to build a neural network that coiddntify
the endpoint of drying barley in bulk on the basfigshe in-
formation obtained from sensors that can measute- au
matically and continuously atmospheric air tempeeaand
RH, plenum air temperature and grain temperatureein
lected locations inside the bed in situations inciwtdrying
air temperature and RH change stochastically.

2. Material and methods
2.1. Experimentson Drying Grain in Bulk

outlet from the drying chamber using the rotameype
airflow meter (b) of the resolution 0.00022 thger 1 mm
length of the scale (Lokkes Maskinfabrik, Denmark).

The experimental rig was equipped in a fan (2haiton-
trol system of the engine rotational speed (3) aheater (5)
with a pulse control system of electrical power. (Buch
equipment allowed precise parameter control ofithélown
into the mass of grain. In order to enforce moéestigsorption
from grain throughout the drying period, an eleuirohu-
midistat (4b) was applied which controlled the hé&ater
which was responsible for ensuring that the airtiRivn into
the grain bulk did not exceed 55%. The responsibilf the
second humidistat (4a) was to switch off the faerdver the

The experimental material used for drying compurise air RH increased over the value of 96% (e.g. dupiexgods of

barley grain cvAnnabellof 12-14% moisture content har-
vested in 2005 near PoznadPoland. Barley grain was arti-
ficially wetted before the trial. For that purpose,was
sprinkled with water of specific weight and leftrfo
24 hours in a facility in which the temperature \8a€. Af-
ter this treatment, the grain moisture content (GMCdif-
ferent trials ranged from 18 to 19.3%. The GMC dete
mined with the assistance of the electronic moéstamna-
lyzer “Sartorius MA 30", Germany was treated as rier-
ence (based on a precision weighing balance amgphjiy-
ing of 5 g sample at the temperature of “T2%0 constant
mass). This moisture analyzer was checked using\vbe
method (PN-ISO 712: 2002). The measuring accuradyeo
analyzer is 0.05% w.b. (wet basis).

In order to obtain important, from the point oéwi of
developing a neural network, information a seriesix ex-
periments was conducted. The way of carrying oasé¢h

rainfalls).

In the course of each drying process, every 1Qutedn
temperature was registered in eight and the airiiRitwo
places of the research station. The temperaturangasured
with the assistance of Cu-Konstantan thermocouf®s
whereas the air RH — using a probe with a sensanbrks
according to the capacitive measuring principle (pe
EE21-FT6B53/T24 of the E+E Elektronik Comp., Auwslri
The temperature was measured at the place wheaenihient
air was sucked in by fan £F), in the channel supplying the
plenum air to the grain bulk g) and in segments of the dry-
ing chamber (T — Ty»). The RH of the atmospheric air
(RH4m) was measured and the plenum air {(Rivas calcu-
lated based on measurements of;RHTam, Tiv @and psy-
chrometric relationships. All thermocouples and ity
probes were connected to the computer system afaatafui-
sition (10) and (11) (ICP-CON 1-7018 of the ICP wanese

experiments has been described below. The expeminencompany) which allowed registration, visualizatiand ar-

drying bin (Fig. 1) consisted of twelve segments éhsy to
disconnect, each 0.1 m high. The mass of the tgmeast
was weighed using for this purpose an electroniaruz
“AXIS B 10" of Sartorius, Germany (resolution

1 g) and the GMC during drying was calculated fribra
mass balance on the basis of water losses. Theityetaf
the air flowing through grain layers was measuredha

chiving of measurement results. Temperature andiditym
probes were calibrated before trials. After catibrg the re-
peatability of results and maximum differences @fasure-
ments between the applied eight temperature prdisesot
exceedt0.2°C. However, due to differences between charac-
teristics of individual sensors and their nonliityathe accu-
racy of the temperature measurements amounts@l 6C.
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Fig. 1. Research rig: 1 — drying bin (L2 ... L12ayers 2 — 12), 2 — fan, 3 — a control system efahgine rotational speed,
4 — humidity controller, 5 — electrical heater, & -pulse control system of electrical power, 7 # whbuilding, 8 — air RH
probe, 9 — temperature sensors, 10 — computer BCavdata acquisition program “Vi-dry”, 11 — datajaisition system’s unit

(Taiwanese ICP_CON I-7018)
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The measurement accuracy of the air RH in the itapbr
range of 10%-96% guaranteed by the manufacturpradfes

successive variables. Genetic algorithms utiligetfacing
variables such evolution mechanisms as: inheritacross-

was+2.5%. In order to improve their accuracy, probesewe ing and mutation [6]. During the selection of feas) the

calibrated prior to experiments and checked dfietrials in a
humidistat chamber with saturated NaCl solutiorie(ece
humidity 75%). However, due to the phenomenon efitys-
teresis of sensors, it was not possible to redueednge of
error belowt2%.

2.2. Methods employed to develop a neural network

input system is assessed on the basis of the slectof
the employed PNN and GRNN networks.

3. Model development of Neural Networks
3.1. Datafiles

In order to find the optimal input variables oétheural
network system, two different files of training datvere

The authors used the analytical software packageeveloped on the basis of the measurement retiksfirst

STATISTICA 7.1 ‘Neural Networks’ to develop, traand
test different types of neural networks. In patacuthey
used such modules as “Intelligent Problem Solv&Zys-
tom Network Designer” and “Sensitivity Analysis” al|
as such methods of feature selection as: “Forwehsse
selection”, “Backward stepwise selection” and “Gine
algorithm”. The “Intelligent Problem Solver” wasads for
initial network development, while the “Custom Netk
Designer”, which allows greater interference in plagame-
ters of the required network model, was employaditlie
independent selection of the network topology. Twalule
called “Sensitivity analysis” was used for the iaditanaly-
sis of the significance of input values. This asayem-
ploys two indicators: ratio of the network errordarank.
The ratio of the network error determines the inimacthe
network operation of the removal of individual \abies (it
is the ratio of the error to the error obtainechgsall vari-
ables). The bigger the ratio, the better and wkeralue is
below 1, then the variable can be rejected. Orbtss of
the ratio the rank of a given variable is definedvhere
value 1 has the highest significance for the nétwdhe
following three methods were used to select featprep-
erly: “Forward stepwise selection”, “Backward stépav
selection” and “Genetic algorithm”. A large numlnétests
with different systems of input values is carriad during
the operation of feature selection algorithms. #is rea-
son, the program “Statistica — Neural Networks” sufsst
learning probabilistic neural networks (PNN) or geadised
regression neural networks (GRNN). During the conse
tive iterations, the stepwise methods either addearove

B Data: dane suszenie 2-12* (11w by 3007c)

of the files comprised temperature differences betwthe
selected layers of grain bulk (Fig. 2). This systefvari-
ables is connected with the transfer of the dryfrant
through the drier column. The file contains 10 (ifjpnde-
pendent variables and one (output) dependent Varidhe
independent variables are of continuous type —etlas
measurement results, while the dependent variablef i
categorical nature (it assumes two complete vaagich
labels were assigned: OWet 1 —Dry). The file consists of
3007 cases. The data set was randomly dividedetdol-
lowing three subsets at the ratio of 2:1:1 — thiing sub-
set (1505 cases), the selection subset (751 casdsjhe
test subset (751 cases). The training subset & gehe
Statistica 7.1 software to carry out the networldeldrain-
ing. The next subset — selection is used to chbeknet-
work quality (already during the training procesBhis is
important to avoid network overtraining and goode@li-
sation of knowledge. The last of the subsets td¢besub-
set takes part in the above-mentioned processes srithe
ultimate tool which allows appropriate quality essment
of the obtained model.

The second data file comprised temperature values

measured in selected layers (Fig. 3). It contaihsnte-

pendent variables and one dependent variable. fidhe- i
pendent variables are of continuous type, whileddyeend-
ent variable is of categorical nature. The file sists of
3906 cases. This data file was also divided rangantb

the following three subsets: the training subsed5{L
cases), the selection subset (976 cases) and sheutaset
(976 cases).

1 2 3 4 5 B 7 8 9 10 11
Time | T_atm. |RH_atm. | T_in RH_in ¥ TIO-T2 | TB-T12 | T4-T12 | T2T12 output
4524000 27120 4604 251 4399 008 1,10 235 3,24 454 Dry
4530000 26N /76 2B 44,36 008 107 23 3,23 451 Dry
4536000  Z6AE 47480 M99 4596 008 1,10 234 3,25 451 Dry
4542000 2615 472 M8 4BAD 008 105 232 3,18 444 Dry
4548000 2612 4774 MB0 4607 008 108 234 3,20 453 Dry
4554000 2547 M9B2 MB3 4745 008 113 234 3.7 455 Dry
4560000 250 £2300 24N 43 54 008 1.1 239 3,28 453 Dry
3006 456600 2485 5193 B4 4852 008 1,10 238 3.7 452 Dry
3007 4572000 2540 BO36 MA 4592 008 1,10 24 334 452 Dry j

Fig. 2. Structure of the data file containing tengpere differences. Variables: 1 — time from thgibeing of the drying
process [s]; 2 — atmospheric air temperatf@;[3 — atmospheric air relative humidity [%)]; 4emperature of plenum air
[°C]; 5 — relative humidity of plenum air [%)]; 6 —yding air velocity [m/s]; 7, 8, 9 and 10 — temperatdifferences between
layers in the dryer, respectivelyigdT1s, Te-T1o T4 T12, To-T1; 11 — output variable

T. Olszewski, A. Ryniecki, P. Boniecki Journal of Research and Applications in Agricultur al Engineering” 2008, Vol. 53(1)

28



Bl Data: dane suszenie temp* (12v hy 3906c)

1 2 3 4 5 b 7 ] g 10 1 12
Time | T atn. |[RH atm. | Tin | RH.in Y T2 T4 Th TW0 | T12 output
4524000 P2 4BD4 BT 4399 008 2443 2313 2224 2089 1989 Dry
4530000 2691 4R7R 2601 4436 008 2443 2315 2229 2089 1992 Dry
4536000 2BEE 4748 2499 4596 008 2443 2317 2228 2102 1992 Dry
4542000 215 4782 2484 4BAD 008 2443 2317 2231 2104 1999 Dry
4548000 12 T4 490 4607 008 24820 2319 2233 2107 1999 Dry
4554000 247 49F2 B3 4745 008 24584 2326 2233 21120 1999 Dry
4560000 ZA01 230 2471 4954 008 2454 2329 22400 21120 2001 Dry
45RE000 2485 5183 24B4 4BA2 008 24F6 2331 2242 2114 2004 Dry

0G| 457200 2640 ADPFE MAT 4692 008 246 2338 2245 2114 2004 Dry j

Fig. 3. Data file structure containing temperatuafies measured in selected locations inside bugtain. Variables: 1 —
time from the beginning of the drying process §s}: atmospheric air temperatuf€T; 3 — atmospheric air relative humid-
ity [%]; 4 — temperature of plenum afid]; 5 — relative humidity of plenum air [%]; 6 —yiing air velocity [m/s]; 7, 8, 9,
10, 11 — temperature values measured in layers&, and 12 of grain bulk:;,TT,, Te, Tigand Ty 12 — output variable

3,2. Data standardization

Empirical data sets are often burdened with measur |

ment errors, noise or interference. In additiorrjaldes of
different measurement units can occur in data setsall
these factors may exert a negative impact on tlesadipn
of some ANN training algorithms. In order to avdidit is
necessary, during the stage of initial preparattonstan-
dardize the data, i.e. to bring all data to a nonethsional
form of a uniform range of variability (so callegre-
processing). Most frequently, scaling in relatiom the
minimal value (so called minimax function [7] ) applied
for this purpose. It involves adjusting values &dhe input
of the network to the intervals appropriate fornthe~ol-
lowing such transformation, the smallest value afiwen
variable is ‘0’ and the largest — ‘1’, whereas thenaining
values are assigned numbers between these valumes.
neuron in the output layer assuming values ‘0’ dridor
each of the classes corresponds to a two-statendepe
variable.

3.3. Initial search of the network model

Intelligent Problem Solvewas utilised for the initial
analysis of the data. The search for an appropraidel
was narrowed down to multilayer perceptrons (MLRY a
radial basis function (RBF) networks. The totalléD net-
works was tested of which 10 best ones were retailme
order to compare the obtained models later, thdiledqum
between the error and the network diversity wasemed.
All independent variables were used for the iniéiahlysis.
Five MLP and five RBF types of networks were obégin
each with 10 inputs and different number of neurionthe

hidden layer. Three files characterised with digetspol-
ogy were selected (Fig. 4). They comprised:

MLP 10-12-1 (10 neurons in the input layer, 12 oegr
in the hidden layer, 1 neuron in the output laydm net-
work trained for 100 epochs by a back propagatigo-a
rithm followed by 14 epochs - by a conjugate gratago-
rithm and, finally, a network with the smallestessl error
was chosen,

* RBF 10-352-1 (10 neurons in the input layer, 35@-ne
rons in the hidden layer, 1 neuron in the outpyedp the
following methods were used for training: the samphnd
k-nearest neighbours methods as well as pseudaosione
(linear optimisation),

e RBF 10-522-1 (10 neurons in the input layer, 52@-ne
dons in the hidden layer, 1 neuron in the outpyery the
following methods were used for training: the samphnd
k-nearest neighbours methods as well as pseudaosione
(linear optimisation).

The lowest values of the training error and tHect®n
error were decisive in the selection process. Thestrde-
sirable feature of the ANN is its ability to gerlesa the ac-
quired knowledge. The value of the selection eprovides
important information about knowledge generalisgtithe
lower this value is, the better. Increased selactior in-
dicates the decline in the capability of the netwtr gen-
eralise; the trained cases were learnt ‘by he@h# test set
which was not used to build the model was appladtie
final test of the ANN possibilities. If the valud the test
error is low, then the network should generalises wata
well [11]. The obtained networks are characterisgdow
values of the selection and test errors.

Wodel Summary Report (dane suszenie 2-12)

Index Profile Train Perf. [Select Perd. [Test Perf. [Train Eror |[Select Enor [Test Errar [ [Training/Members  [Mote [Inputs [Hidden{1) [Hidden(2)
5 [ MLP 10:10-12-1:11 0962126 0974700 0866711 015735 0159164 0,117818 BER100,CG14b 0 12

7 RBF 10:10-352-1:1° 0970764 0965379 0964043 008229 0098332 0,075529 35 KNI 10 352 0
10 |REF 10:10-522-1:1) 05979402 0973369 0965379 0,063233 0071695 0,075659 35 KNP 10 522 0

Fig. 4. Parameters of the best networks for tha dat with temperature differences
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Table 1. Results of the analysis of the variablection for the data set with temperature diffeesnc

Error | Time | T_atm. | RH_atm. | T_in

RH_in | v | T10-T12 | T6-T12 | T4-T12 | T2-T12

Final Y - - -

0,3658

- Y Y Y - Y

Table 2. Analysis results of variable selectiontfar data set with temperature values in selecieatibns inside the bulk of

grain

Error | Time | T_atm. | RH_atm.

T in.

RHin| v |T2| T4 | T6 |T10]| T 12

Final 0,3485 Y - - -

- Y Y Y Y Y Y

3.4. Decreasein the number of input data

In order to check the significance of the indiatlinput
data describing the process and limit the numbehénde-
velopment of the model, the sensitivity analysiss vper-
formed. After averaging the values obtained from dhaly-
ses for three models, the highest rank was obtaiyethe
‘time’ variable followed by the ‘velocity’ variableOn the
basis of the results of the sensitivity analysis, number of
input variables was reduced. For this purposefdi@wing
feature selection algorithms were employed: forwstehb-
wise selection, backward stepwise selection andtgealgo-
rithms. Each of the algorithms presented the sasie® of
inputs. The most useful turned out to be the falmwari-
ables: time, drying air velocity (v) and the follmg tem-
perature differences:FT1,, Te-To and B-Tq, (Tab. 1).

3.5. Proper search of the network model

The second stage of the neural network selectinthe
drying process prediction was the utilisationtloé custom
network designemwhich involved the training of the net-
work using for this purpose the optimal input systealcu-
lated by the feature selection algorithms. Only Rigpe
networks were taken into account because they \asthie
the lowest error values in previous tests. Thel totdl00
networks was tested. The network selected, the tetst
work of the RBF type of 5-352-1 topology (5 neuramshe
input layer, 352 neurons in the hidden layer, lroein the
output layer), was characterised by a high coresstnof
classification and the select error of 0.1231 draltest er-
ror of 0.1207. Another consideration taken intocasd was
to preserve the balance between the network queditlyits
size. The identical procedure was employed in tse of
the data set with temperature values in selectedtitms
inside the bulk of grain. The total of 100 netwonkas
tested of which 10 were saved. The sensitivity ys&s of
the obtained networks as well as the selectionyageal of
input variables were carried out using the samerilgns
as before. In this case, the following variablesenteeated
as the most important ones: time, drying air veyogr) and
temperatures in individual layers (Tab. 2). Theultssof
these analyses were used to look for networks whith
smaller number of inputs and then proceeding tmitrg
the network employing the optimal input system ckdted
by the algorithms. The total of 100 networks wasted.
The network finally selected was the best netwdrkhe
RBF type of 7-300-1 topology (7 neurons in the inpyer,
300 neurons in the hidden layer, 1 neuron in thguwu
layer). The values of its select and test erroren@.0974
and 0.1052, respectively.

T. Olszewski, A. Ryniecki, P. Boniecki
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4. Network model validation and discussion

Employing initially theintelligent problem solveand
‘fine tuning’ the models with the assistance of tustom
network designersatisfactory results were obtained (Figs.
5, 6). Small select errors (0.123131 for the firstwork and
0.097425 — for the second) provide the most immbrita-
formation for the assessment of the networks. Tihdigate
their capability to generalise and avoid overtragniln or-
der to make sure that the results for the selecsidrset
were not random, the test subset was chosen fofirtak
selection of the model. It does not take part m rietwork
training process and is used only once. The sindtaor
values for the selection and test subsets indittze the
network generalises the acquired knowledge well.

The utilisation of different methods of input \able se-
lection such as theensitivity analysisr thefeature selection
algorithm aimed at the justification of the removal of tlee s
lected input variables. Identical results for akthods pro-
vide unequivocal information about their optimales&on.
This made it possible to reduce significantly thenber of
independent variables for each of the data sets.

With regard to the classification problem, onetloé
important measures of the quality of the obtainextieh is
the number of the correctly assigned cases to resed
classes. In the developed networks, this correstreznains
on a high level and amounts to 99.3% for Wetclass and
97.3% for theDry class. These values for the second net-
work amount to 99.6% and 97.4%, respectively. When
comparing the networks obtained for the first ardosd
data sets, it can be concluded that both of theanade with
similar generalisation capabilities.

5. Conclusions

1. The study confirmed the research assumption alnaut t
possibility of developing a model of an artificiaeuron
network for the identification of the endpoint difet low-
temperature drying process in an inert barley giathm
thick. This is evident from the high correctnesstef case
assignment to recognised classes (ranging from-93.3
99.6%) as well as from the high capability to gatise the
analysed data.

2. Using feature selection algorithms, it was possiole
reduce the number of input variables: from 10 timi5the

set of measurement results taking into considaragi@in

temperature differences between the selected lafetise

inert grain bulk and from 11 to 7 for the set ofamgrement
results taking into consideration grain temperataiees at
the selected layers of the inert grain bulk.
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RBF 5-352-1

Classification (B ) (dane suszenie 2-12)
output.Wet.6 output. Dry &
Total [ 2488 000 519,0000
Corract 2473000 505,0000
YWrong 15,000 14,0000
Unknown 0,000 0,0000
[ [correct(s) 93,3597 o7 aozs| |
YWyrong (%) 0,603 2975
Unknown(%) 0,000 00,0000

Fig. 5. Classification results for the first datd with grain temperature differences between setelayers

RBF 7-300-1

Classification (B ) (dane suszenie termp)
output.Wet.b [ output. Ory.B
Total [ 3357 ,DDQ! 519,0000
Correct 3376,000 506,0000
Wraong 12,000 13,0000
Lrnknown 0,000 00000
[ [ corectz) 99 645 g7 4952] |
Wrong(%) 0,354 25048
LUnknown(%a) 0,000 0,0000

Fig. 6. Classification results for the second datiawith grain temperature values in selected &ayer

3. The following variables: time of drying, drying are-

[4] Korbicz J., Obuchowicz A., Usski D.: Artificial Neural

locity and grain temperature value in all layenméd out to
be the most important ones allowing the identifaatof
the drying barley grain in bulk of 1.2 m thick.

4. Data sets containing 3906 cases, 3009 dividedrgeth
subsets: training, selection and test, are suffidie obtain
networks with satisfactory generalising values.

It is necessary to conduct further search to firel way of
decreasing the number of neurons in the hidderr lafythe
obtained neural networks.

(5]

(6]

[7]
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