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THE IMPORTANCE OF STRUCTURAL AND PRACTICAL UNIDENTIFIABILITY  

IN MODELING AND TESTING OF AGRICULTURAL MACHINERY. IDENTIFIABILITY 

TESTING OF AGGREGATE MODEL PARAMETERS TRACTOR BALER-WRAPPER 
 

Summary 
 

New methods of parametric identification are presented in particular tests of identifiability and non-identifiability of model 
parameters. A definition of the concept of identifiability of model parameters is presented. Methods for testing identifiability 
using Laplace transform using similarity transformation and using symbolic calculations are described. Available software 
for testing model identifiability is presented. These are programs for symbolic calculations (MAPLE MATHEMATICA) op-
erating in the form of web applications and in the form of tools for the Matlab environment. The method of introducing the 
model to the computational environment in the form ordinary differential equations (ODE) is presented. Examples of calcu-
lations identifiability of parameters of the complex model of the tractor-single-axle agricultural machine e.g. a baler-
wrapper are included. 
Keywords: dynamic modelling, identifiability, parameter identification, agricultural machine 
 

 

ZNACZENIE NIEIDENTYFIKOWALNOŚCI STRUKTURALNEJ I PRAKTYCZNEJ  

W MODELOWANIU I BADANIACH MASZYN ROLNICZYCH.  

BADANIE IDENTIFIKOWALNOŚCI PARAMETRÓW MODELU  

AGREGATU CIĄGNIK-PRASOOWIJARKA 
 

Streszczenie 
 

Przedstawiono nowe metody prowadzenia identyfikacji parametrycznej w szczególności badania identyfikowalności oraz 

nieidentyfikowalności parametrów modelu. Przedstawiono definicję pojęcia identyfikowalności parametrów modelu. Opisa-
no metody badania identyfikowalności za pomocą transformacji Laplace'a z zastosowaniem transformacji podobieństwa 

oraz za pomocą obliczeń symbolicznych. Przedstawiono dostępne oprogramowanie do badania identyfikowalności modelu. 
Są to programy do obliczeń symbolicznych (MAPLE MATHEMATICA) działające w formie aplikacji sieciowych oraz w po-

staci przyborników do środowiska Matlab. Przedstawiono sposób wprowadzenia modelu do środowiska obliczeniowego 
w postaci równań różniczkowych zwyczajnych. Zamieszczono przykładowe wyniki obliczeń identyfikowalności parametrów 

złożonego modelu układu ciągnik-jednoosiowa maszyna rolnicza, np. prasoowijarka.  
Słowa kluczowe: modelowanie dynamiczne, identyfikowalność, identyfikacja parametrów, maszyna rolnicza 
 

1. Introduction 

 

 Mathematical modeling is tool used to better understand 

complex mechanical system. A common problem that aris-

es when developing a model of a mechanical system is that 

some of its parameters are unknown. This is especially im-

portant when those parameters have special meaning but 

cannot be directly measured. Thus a natural question arises: 

Can all or at least some of the model’s parameters be esti-

mated indirectly and uniquely from observations of the sys-

tem’s input and output? A concept structural identifiability 

which plays a central role in identification problems was 

introduced for the first time in the work of Bellman and 

Åström [1]. The concept is useful when answering ques-

tions such as: To what extent is it possible to get insight in-

to the internal structure of a system from input-output 

measurements? What experiments are necessary in order to 

determine the internal couplings uniquely? Sometimes the 

uniqueness holds only within a certain range. In this case 

we say that a system is only locally structurally identifiable. 

 

2 The concept of model identifiability 
 

 The definition of structural identifiability was formulat-

ed by Walter and Pronzato (1997) and Ljung [7]. Let us as-

sume that the notation Mi(pi) ≡ Mj(pj) means that the model 

with the structure Mi(∙)and the values of parameters pi be-

haves the same (i.e. for the same input values the same out-

put values are obtained) as the model with the structure 

Mj(∙) and pj parameter values for any input values and any 

time t.  
**)()( pppMpM 

 (1) 

 We say that the M(∙) model is uniquely identifiable (or 

globally identifiable) if there is a condition for almost every 

p* value. 

 This means that the identical input / output behavior of 

two identical model structures implies that the estimated set 

of parameters is unique and corresponds to the real set of 

parameters. 

 Structural identifiability regards the possibility of giving 

unique values to model unknown parameters from the 
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available observables assuming perfect experimental data 

(i.e. noise-free and continuous in time). 

 A parameter pi  i=1,...,n is structurally globally (or 

uniquely) identifiable if for almost any Pp *
 [3], 

**)()( ii pppp   . (1) 

 

 A parameter pi  i=1,...,n is structurally locally identifia-

ble if for almost any Pp *
 there exists a neighbourhood 

)( *pV such that 

)( *pVp  and 
**)()( ii pppp   . (3) 

 

 A parameter pi  i=1,...,n is structurally non-identifiable if 

for almost any Pp *
 there exists no neighbourhood 

)( *pV such that 

)( *pVp  and 
**)()( ii pppp   . (2) 

 

 Identifiability testing allows the design of experiments 

providing guidelines for the selection of measurement loca-

tions of the inputs and outputs of the system to enable its 

uniquely identification. This is especially useful for com-

plex systems (e.g. physiological systems) where the number 

and location of possible inputs and outputs is often very 

limited. 

 The Identifiability results can be used to formulate a 

minimum i.e. necessary and sufficient input / output con-

figuration for complex experiments. Identifiability analysis 

can also be helpful in providing guidelines for dealing with 

system identifiability providing guidance on how to simpli-

fy model structure or get more information (increasing 

measured parameters) needed for a particular experiment. 

 Identifiability analysis is a critical step in the process of 

parameter estimation it allows you to assess whether it is 

possible to obtain unique model parameter values from the 

given set of data. 

 

3. Methods for testing structural identifiability  

 

 Structural identifiability analysis of linear models is 

well understood and there are a number of methods to per-

form such a task. We will present several methods of test-

ing identifiability based on the analysis of the system de-

scribed by equations in the state space. 

 

3.1. Identifiability testing using Laplace transforms 
 

 The state-space model is represented by a system of 

equations of the form: 

)()()( tButAxtx   

)()()( tDutCxty 
   (5) 

where: x(t)∈ is a vector of the states of the system u(t) is the 

vector of inputs y(t) is the vector of outputs.  
 

 The A matrix is called the dynamics matrix the B matrix 

is called the control matrix the C matrix is called the sensor 

matrix and the D matrix is called the direct term. The one-

to-many relationship between a system’s transfer function 

and its state-space model is given by Laplace variable: 

 

G(s) =C(sI−A)−1B+D  (6) 

 The Laplace variable state-space model (A,B,C,D) is a 

minimal realization of G(s) meaning that it is both control-

lable and observable. 

 The parameterization 𝑃(𝛼) of system matrices 

(A,B,C,D) is globally identifiable from the transfer function 

G(s) if for all 𝛼1,𝛼2 there is a relationship [12]: 

 

𝐺(𝑠)=𝐶(𝛼1)(sI−A(𝛼1))-1𝐵(𝛼1)=𝐶(𝛼2)(sI−A(𝛼2))-1𝐵(𝛼2) (7) 

 

then 𝛼1=𝛼2. 

 

 For the linear model the classic approach to testing its 

identifiability is to analyze the transmittance function ob-

tained from the Laplace transform. The matrix of transmit-

tance function is defined as: 

),(

),(
),(

psU

psY
psH 

.  (8) 

where: 

s - is an argument from Laplace space, 

Y (s p) U (s p) - are Laplace transformations of output and 

input. 

 After writing H (s p) in canonical form we can describe 

the transmittance as functions of the parameters p and p *. 

Based on the relation H (s p) = H (s p *) we can derive a set 

of equations describing the transmittance coefficients H (s 

p) and H (s p *). If the solution of the system of equations is 

unique for p then p = p * and the model is structurally iden-

tifiable. 

 As an example of using this method we can analyze a 

system with one input and one output (SISO) described by 

the relationships: 

cuxba
dt

tdx
 )(

)(

.  (9) 

00 x  and y(t) = x(t). (10) 

 The parameters are a b c and input u. The output of y (t) 

is the state variable x (t). After applying the Laplace trans-

form we get: 

)()()()( scUsXbassX 
, (11) 

where X (s) U (s) are the state variable and the input varia-

ble in the Laplace domain. The observable model in the La-

place domain is Y (s) = X (s). The transmittance function 

has the form: 

)()(

)(
)(

bas

c

sU

sY
sH




. (12) 

 Knowing the form of transmittance you can identify any 

quantities that are described by one factor. All quantities 

that consist of a combination of two or more coefficients 

are not identifiable by themselves. It is required to specify a 

set of solutions for quantities composed of several factors. 

Identification equations take the form: 
*cc   (13) 

** baba  . (14) 

 

 Based on equations (13) and (14) it can be concluded 

that the parameter c is uniquely identifiable while the pa-

rameters a and b are unidentifiable. Equation (14) has an 

infinite number of solutions.  
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3.2. System identifiability study using similarity trans-

formation 
 

 Walter and Lecourtier proposed the similarity transfor-

mation method for linear ODE models. The system is de-

scribed in state space form: 

BuAxx    (15) 

Cxy 
 (16) 

where A B and C are matrices of constant coefficients. 

 The basic idea of this method is to find the similarity 

transformation matrix S = P-1 AP of matrix A satisfying the 

equation [10, 14]: 

BuxAPPx   )( 1
, (17) 

where P is a non-singular matrix. 

 

 It is straight forward to show that if the only possible 

similar transformation of A is P = I the system is uniquely 

and globally identifiable; if a finite number of P ≠ I can be 

found the system is locally identifiable (or nonuniquely 

identifiable); otherwise the system is unidentifiable. 

Before you can apply the similarity transformation method 

you need to know the controllability and observability of 

the system. Differential equations should be generated and 

solved to determine the identifiability of the system. The 

similarity transformation method is not applicable to gen-

eral nonlinear systems. 

 

4. Computer systems for testing the identifiability of 

model parameters 
 

 System identifiability testing is also carried out using 

symbolic calculations. Symbolic calculations can be per-

formed using dedicated computer systems e.g. MAPLE 

Maxima or MATHEMATICA. In addition to symbolic cal-

culation programs other programs may be used to investi-

gate identifiability. 

 COMBOS (Fig. 1) is a web app that addresses and 

solves the structural identifiability problem for a practical 

class of nonlinear (and linear) ordinary differential equation 

(ODE). COMBOS use the computer algebra system Maxi-

ma and symbolic differential algebra algorithm based on 

computing Gröbner bases of model attributes.  

 Matlab toolboxes are also available that use symbolic 

calculations performed in the MATLAB environment. The 

best known Matlab toolboxes for identifiability calculations 

are [2, 8, 13, 15, 16]: 

• PottersWheel using the Profile Likelihood Approach 

method (method of estimating credibility), 

• DAISY (Differential Algebra for Identifiability of SYs-

tems), 

• GenSSI (Generating Series approach for testing Structural 

Identifiability), 

• STRIKE-GOLDD (STRuctural Identifiability taKen as 

Extended-Generalized Observability with Lie Derivatives 

and Decomposition). 

 

 
Fig. 1. Entering model parameters in COMBOS to study model identifiability [9] 

Rys. 1. Wprowadzanie parametrów modelu w programie COMBOS w celu badania identyfikowalności modelu [9] 
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5. Identifiability testing of aggregate model parameters 

tractor baler-wrapper 

 

 The complex dynamic system of the tractor - single-axis 

agricultural machine (baler-wrapper) was tested. Tractor 

model dynamics - a single-axis agricultural machine cor-

rectly describes the bicycle model [9]. The machine model 

described in the form of ordinary differential equation 

(ODE) differential equations was introduced into the calcu-

lation program. In this case was used the program STRIKE-

GOLDD which is a MATLAB toolbox that analyses the 

local structural identifiability observability and invertibility 

of (possibly nonlinear) dynamic models of ordinary differ-

ential equations (ODEs). It follows a differential geometry 

approach recasting the identifiability problem as an observ-

ability problem. Gröbner bases of model attributes are 

computed to find the identifiable parameters and parameter 

combinations of the model [8]. The identifiability is deter-

mined by calculating the rank of a generalized observabi-

lity-identifiability matrix which is built using Lie deriva-

tives.  

 STRIKE-GOLDD reads models stored as MATLAB 

MAT-files (.mat). The model states outputs and parameters 

as well as its dynamic equations must be defined as vectors 

of symbolic variables whose names must follow a specific 

convention. The process of defining a suitable model con-

sists of the following stages: 

 all the parameters states and any other entities (known 

constants) appearing in the model must be defined as sym-

bolic variables: syms,  

 define the state variables by creating a column vector 

named x, 

 define the vector of output variables which must be 

named h, 

 the vector of unknown parameters must be called p, 

 the dynamic equations must also be entered as a column 

vector called f, 

 the vector of initial conditions must be called ics, 

 define another vector known_ics to specify which initial 

conditions are known. It must have the same length as the 

state vector x and its entries should be either 1 or 0 depend-

ing on whether the corresponding initial condition is known 

or unknown  

 finally save all the variables in a MAT-file. 

 Tractor model dynamics - a single-axis agricultural ma-

chine correctly describes the bicycle model [4, 5, 6]. An 

example of such a machine is the aggregate tractor baler-

wrapper. The machine model described in the form of ordi-

nary differential equation (ODE) was introduced into the 

calculation program. 

 The machine model entered into the calculation pro-

gram has the form [11]: 

Dynamic variables  

 v_tc - tractor CG lateral velocity [ms-1], 

 gam_t - tractor yaw rate [rads-1], 

 gam_i - implement yaw rate [rads-1], 

 alp_tf - tractor front tire slip angle [rad], 

 alp_tr - tractor rear tire slip angle [rad], 

 alp_ir - implement tire slip angle [rad], 

 x_tc - tractor CG trajectory in world [m], 

 y_tc - tractor CG trajectory in world [m], 

 psi_t - tractor heading angle in world [rad], 

 psi_i - implement heading angle in world [rad]. 

 

 
 

Source: own study / Źródło: opracowanie własne 
Fig. 2. Tractor baler-wrapper set during field tests  

Rys. 2. Agregat prasoowijarka-ciągnik podczas badań polowych 
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 Dynamic parameters 

 C_atf - tractor front tire cornering stiffness [Nrad-1], 

 C_atr - tractor rear tire cornering stiffness [Nrad-1], 

 C_air - implement tire cornering stiffness [Nrad-1], 

 sig_tf - tractor front tire relaxation length [m], 

 sig_tr - tractor rear tire relaxation length [m],  

 sig_ir - implement tire relaxation length [m],  

Constant (fixed) parameters  

 m_t - tractor mass [kg], 

 m_i - implement mass [kg], 

 I_tz - tractor yaw moment of inertia [kg·m2], 

 I_iz - implement yaw moment of inertia [kg·m2], 

 u_tc - tractor longitudinal velocity[ms-1], 

 a - distance between front axle and CG of tractor [m], 

 b - distance between rear axle and CG of tractor [m], 

 c - distance between tractor CG and hitch point [m], 

 d - distance between hitch point and implement CG [m], 

 e - distance between implement CG and implement axle [m], 

 del -ramp input to front wheel angle [rad]. 

 
 The data is entered into the calculation program by specifying the required model parameters in the calculation procedure. 

 The following are examples of the parameters of the aggregate model tractor baler-wrapper (Fig. 2). The most complex is to 

provide the form of ordinary differential equation (ODE) describing the machine model (dynamic equations). 

 

% states: 

x=[v_tc;gam_t;gam_i;alp_tf;alp_tr;alp_ir;x_tc;y_tc;psi_t;psi_i] 

 

% parameters : 

p = [v_tc;gam_t;gam_i;alp_tf;alp_tr;alp_ir;x_tc;y_tc;psi_t;psi_i;C_atf;C_atr;C_air;sig_tf;sig_tr;sig_ir]; 

 

% outputs: 

h=[x_tc;y_tc;gam_t;psi_t] 

 

% one input: 

u = [deld]; 

 

% dynamic equations: 

f(1)= - gam_t*u_tc - (C_atf*alp_tf*(I_iz*m_i*c^2 + I_iz*a*m_i*c + I_tz*m_i*d^2 + I_iz*I_tz))/(I_iz*m_i*m_t*c^2 + 

I_tz*m_i*m_t*d^2 + I_iz*I_tz*m_i + I_iz*I_tz*m_t) - (C_atr*alp_tr*(I_iz*m_i*c^2 - I_iz*b*m_i*c + I_tz*m_i*d^2 + 

I_iz*I_tz))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 + I_iz*I_tz*m_i + I_iz*I_tz*m_t) - (C_air*I_tz*alp_ir*(I_iz - 

d*e*m_i))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 + I_iz*I_tz*m_i + I_iz*I_tz*m_t) 
 

f(2)= (C_atr*alp_tr*(b*m_i*m_t*d^2 + I_iz*b*m_i + I_iz*b*m_t - I_iz*c*m_i))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 

+ I_iz*I_tz*m_i + I_iz*I_tz*m_t) - (C_atf*alp_tf*(a*m_i*m_t*d^2 + I_iz*a*m_i + I_iz*a*m_t + 

I_iz*c*m_i))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 + I_iz*I_tz*m_i + I_iz*I_tz*m_t) + (C_air*alp_ir*c*m_t*(I_iz - 

d*e*m_i))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 + I_iz*I_tz*m_i + I_iz*I_tz*m_t) 
 

f(3)= (C_air*alp_ir*(e*m_i*m_t*c^2 + I_tz*d*m_t + I_tz*e*m_i + I_tz*e*m_t))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 

+ I_iz*I_tz*m_i + I_iz*I_tz*m_t) - (C_atf*alp_tf*d*m_i*(I_tz - a*c*m_t))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 + 

I_iz*I_tz*m_i + I_iz*I_tz*m_t) - (C_atr*alp_tr*d*m_i*(I_tz + b*c*m_t))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 + 

I_iz*I_tz*m_i + I_iz*I_tz*m_t) 
 

f(4)= v_tc/sig_tf - (alp_tf*u_tc)/sig_tf - (deld*u_tc)/sig_tf + (a*gam_t)/sig_tf 
 

f(5)= v_tc/sig_tr - (alp_tr*u_tc)/sig_tr - (b*gam_t)/sig_tr 
 

f(6)= v_tc/sig_ir - (alp_ir*u_tc)/sig_ir - (psi_i*u_tc)/sig_ir + (psi_t*u_tc)/sig_ir - (gam_i*(d + e))/sig_ir - (c*gam_t)/sig_ir 
 

f(7)= u_tc*cos(psi_t) - v_tc*sin(psi_t) 
 

f(8)= v_tc*cos(psi_t) + u_tc*sin(psi_t) 
 

f(9)= gam_t 
 

f(10)= gam_i 
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% initial conditions: 

ics=[0 0 0 0 0 0 0 0 0 0];   
 

% which initial conditions are known: 

known_ics=[0 0 0 0 0 0 0 0 0 0];   
 

 After starting the calculation program we receive information about which parameters are identifiable. The result has the 

form. 
 

6. Results summary 

 

 The model is structurally unidentifiable. 

These parameters are identifiable: 

 matrix([[C_air C_atf C_atr sig_ir sig_tf sig_tr]]).  

These parameters are unidentifiable: 

 matrix([[alp_ir alp_tf alp_tr gam_i gam_t psi_i psi_t 

v_tc x_tc y_tc]]).  

 These states are unobservable (and their initial condi-

tions if considered unknown are unidentifiable): 

 matrix([[alp_ir alp_tf alp_tr gam_i psi_i v_tc]]).  

These states are directly measured: 

 matrix([[gam_t] [x_tc] [y_tc] [psi_t]]).  

These inputs are known:  

 deld. 

 Calculations show that only parameters are identifiable 

while variables are unidentifiable. Therefore dynamic vari-

ables must be determined during the measurement. 

 

7. Conclusions 

 

 Investigating the identifiability of system model param-

eters requires the use of complex mathematical tools. For 

this purpose symbolic notation and differential geometry 

methods are used. The available software for testing the 

identifiability of system model parameters in the form of a 

network application and toolboxes in the Matlab environ-

ment was presented. In order to perform calculations it is 

required to provide system differential equations (ODEs) 

state variables and system inputs and outputs.  

 An example of dynamic system model identification 

aggregate tractor uniaxial machine was presented. The pre-

sented methods of assessing the identifiability of system 

parameters can be useful during parameter estimation. They 

allow you to assess whether it is possible to uniquely obtain 

model parameter values from the given data set. 
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